Metamath Proof Explorer


Theorem ercnv

Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion ercnv ( 𝑅 Er 𝐴 𝑅 = 𝑅 )

Proof

Step Hyp Ref Expression
1 errel ( 𝑅 Er 𝐴 → Rel 𝑅 )
2 relcnv Rel 𝑅
3 id ( 𝑅 Er 𝐴𝑅 Er 𝐴 )
4 3 ersymb ( 𝑅 Er 𝐴 → ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) )
5 vex 𝑥 ∈ V
6 vex 𝑦 ∈ V
7 5 6 brcnv ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 )
8 df-br ( 𝑥 𝑅 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 )
9 7 8 bitr3i ( 𝑦 𝑅 𝑥 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 )
10 df-br ( 𝑥 𝑅 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 )
11 4 9 10 3bitr3g ( 𝑅 Er 𝐴 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ) )
12 11 eqrelrdv2 ( ( ( Rel 𝑅 ∧ Rel 𝑅 ) ∧ 𝑅 Er 𝐴 ) → 𝑅 = 𝑅 )
13 2 12 mpanl1 ( ( Rel 𝑅𝑅 Er 𝐴 ) → 𝑅 = 𝑅 )
14 1 13 mpancom ( 𝑅 Er 𝐴 𝑅 = 𝑅 )