Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
⊢ ( ¬ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) |
2 |
|
simpl |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝑅 Er 𝑋 ) |
3 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) → 𝑥 ∈ [ 𝐴 ] 𝑅 ) |
4 |
3
|
adantl |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝑥 ∈ [ 𝐴 ] 𝑅 ) |
5 |
|
vex |
⊢ 𝑥 ∈ V |
6 |
|
ecexr |
⊢ ( 𝑥 ∈ [ 𝐴 ] 𝑅 → 𝐴 ∈ V ) |
7 |
4 6
|
syl |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐴 ∈ V ) |
8 |
|
elecg |
⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
9 |
5 7 8
|
sylancr |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
10 |
4 9
|
mpbid |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐴 𝑅 𝑥 ) |
11 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) → 𝑥 ∈ [ 𝐵 ] 𝑅 ) |
12 |
11
|
adantl |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝑥 ∈ [ 𝐵 ] 𝑅 ) |
13 |
|
ecexr |
⊢ ( 𝑥 ∈ [ 𝐵 ] 𝑅 → 𝐵 ∈ V ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐵 ∈ V ) |
15 |
|
elecg |
⊢ ( ( 𝑥 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) |
16 |
5 14 15
|
sylancr |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) |
17 |
12 16
|
mpbid |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐵 𝑅 𝑥 ) |
18 |
2 10 17
|
ertr4d |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → 𝐴 𝑅 𝐵 ) |
19 |
2 18
|
erthi |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) |
20 |
19
|
ex |
⊢ ( 𝑅 Er 𝑋 → ( 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
21 |
20
|
exlimdv |
⊢ ( 𝑅 Er 𝑋 → ( ∃ 𝑥 𝑥 ∈ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
22 |
1 21
|
syl5bi |
⊢ ( 𝑅 Er 𝑋 → ( ¬ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
23 |
22
|
orrd |
⊢ ( 𝑅 Er 𝑋 → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
24 |
23
|
orcomd |
⊢ ( 𝑅 Er 𝑋 → ( [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) |