| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neq0 | ⊢ ( ¬  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 )  =  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  𝑅  Er  𝑋 ) | 
						
							| 3 |  | elinel1 | ⊢ ( 𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 )  →  𝑥  ∈  [ 𝐴 ] 𝑅 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  𝑥  ∈  [ 𝐴 ] 𝑅 ) | 
						
							| 5 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 6 |  | ecexr | ⊢ ( 𝑥  ∈  [ 𝐴 ] 𝑅  →  𝐴  ∈  V ) | 
						
							| 7 | 4 6 | syl | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  𝐴  ∈  V ) | 
						
							| 8 |  | elecg | ⊢ ( ( 𝑥  ∈  V  ∧  𝐴  ∈  V )  →  ( 𝑥  ∈  [ 𝐴 ] 𝑅  ↔  𝐴 𝑅 𝑥 ) ) | 
						
							| 9 | 5 7 8 | sylancr | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  ( 𝑥  ∈  [ 𝐴 ] 𝑅  ↔  𝐴 𝑅 𝑥 ) ) | 
						
							| 10 | 4 9 | mpbid | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  𝐴 𝑅 𝑥 ) | 
						
							| 11 |  | elinel2 | ⊢ ( 𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 )  →  𝑥  ∈  [ 𝐵 ] 𝑅 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  𝑥  ∈  [ 𝐵 ] 𝑅 ) | 
						
							| 13 |  | ecexr | ⊢ ( 𝑥  ∈  [ 𝐵 ] 𝑅  →  𝐵  ∈  V ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  𝐵  ∈  V ) | 
						
							| 15 |  | elecg | ⊢ ( ( 𝑥  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝑥  ∈  [ 𝐵 ] 𝑅  ↔  𝐵 𝑅 𝑥 ) ) | 
						
							| 16 | 5 14 15 | sylancr | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  ( 𝑥  ∈  [ 𝐵 ] 𝑅  ↔  𝐵 𝑅 𝑥 ) ) | 
						
							| 17 | 12 16 | mpbid | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  𝐵 𝑅 𝑥 ) | 
						
							| 18 | 2 10 17 | ertr4d | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  𝐴 𝑅 𝐵 ) | 
						
							| 19 | 2 18 | erthi | ⊢ ( ( 𝑅  Er  𝑋  ∧  𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 ) )  →  [ 𝐴 ] 𝑅  =  [ 𝐵 ] 𝑅 ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝑅  Er  𝑋  →  ( 𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 )  →  [ 𝐴 ] 𝑅  =  [ 𝐵 ] 𝑅 ) ) | 
						
							| 21 | 20 | exlimdv | ⊢ ( 𝑅  Er  𝑋  →  ( ∃ 𝑥 𝑥  ∈  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 )  →  [ 𝐴 ] 𝑅  =  [ 𝐵 ] 𝑅 ) ) | 
						
							| 22 | 1 21 | biimtrid | ⊢ ( 𝑅  Er  𝑋  →  ( ¬  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 )  =  ∅  →  [ 𝐴 ] 𝑅  =  [ 𝐵 ] 𝑅 ) ) | 
						
							| 23 | 22 | orrd | ⊢ ( 𝑅  Er  𝑋  →  ( ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 )  =  ∅  ∨  [ 𝐴 ] 𝑅  =  [ 𝐵 ] 𝑅 ) ) | 
						
							| 24 | 23 | orcomd | ⊢ ( 𝑅  Er  𝑋  →  ( [ 𝐴 ] 𝑅  =  [ 𝐵 ] 𝑅  ∨  ( [ 𝐴 ] 𝑅  ∩  [ 𝐵 ] 𝑅 )  =  ∅ ) ) |