Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
erdsze.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
3 |
|
erdsze.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
4 |
|
erdsze.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
5 |
|
erdsze.l |
⊢ ( 𝜑 → ( ( 𝑅 − 1 ) · ( 𝑆 − 1 ) ) < 𝑁 ) |
6 |
|
reseq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐹 ↾ 𝑤 ) = ( 𝐹 ↾ 𝑦 ) ) |
7 |
|
isoeq1 |
⊢ ( ( 𝐹 ↾ 𝑤 ) = ( 𝐹 ↾ 𝑦 ) → ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ) ) |
9 |
|
isoeq4 |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑤 ) ) ) ) |
10 |
|
imaeq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑦 ) ) |
11 |
|
isoeq5 |
⊢ ( ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ) ) |
13 |
8 9 12
|
3bitrd |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ) ) |
14 |
|
elequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦 ) ) |
15 |
13 14
|
anbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) ↔ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) ) ) |
16 |
15
|
cbvrabv |
⊢ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } = { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } |
17 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 1 ... 𝑧 ) = ( 1 ... 𝑥 ) ) |
18 |
17
|
pweqd |
⊢ ( 𝑧 = 𝑥 → 𝒫 ( 1 ... 𝑧 ) = 𝒫 ( 1 ... 𝑥 ) ) |
19 |
|
elequ1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) ↔ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) ) ) |
21 |
18 20
|
rabeqbidv |
⊢ ( 𝑧 = 𝑥 → { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } = { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) |
22 |
16 21
|
syl5eq |
⊢ ( 𝑧 = 𝑥 → { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } = { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) |
23 |
22
|
imaeq2d |
⊢ ( 𝑧 = 𝑥 → ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) = ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) ) |
24 |
23
|
supeq1d |
⊢ ( 𝑧 = 𝑥 → sup ( ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) , ℝ , < ) = sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
25 |
24
|
cbvmptv |
⊢ ( 𝑧 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) , ℝ , < ) ) = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
26 |
|
isoeq1 |
⊢ ( ( 𝐹 ↾ 𝑤 ) = ( 𝐹 ↾ 𝑦 ) → ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ) ) |
27 |
6 26
|
syl |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ) ) |
28 |
|
isoeq4 |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑤 ) ) ) ) |
29 |
|
isoeq5 |
⊢ ( ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑦 ) → ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ) ) |
30 |
10 29
|
syl |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ) ) |
31 |
27 28 30
|
3bitrd |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ↔ ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ) ) |
32 |
31 14
|
anbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) ↔ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) ) ) |
33 |
32
|
cbvrabv |
⊢ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } = { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } |
34 |
19
|
anbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) ↔ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) ) ) |
35 |
18 34
|
rabeqbidv |
⊢ ( 𝑧 = 𝑥 → { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } = { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) |
36 |
33 35
|
syl5eq |
⊢ ( 𝑧 = 𝑥 → { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } = { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) |
37 |
36
|
imaeq2d |
⊢ ( 𝑧 = 𝑥 → ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) = ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) ) |
38 |
37
|
supeq1d |
⊢ ( 𝑧 = 𝑥 → sup ( ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) , ℝ , < ) = sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
39 |
38
|
cbvmptv |
⊢ ( 𝑧 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) , ℝ , < ) ) = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
40 |
|
eqid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ 〈 ( ( 𝑧 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) , ℝ , < ) ) ‘ 𝑛 ) , ( ( 𝑧 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) , ℝ , < ) ) ‘ 𝑛 ) 〉 ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ 〈 ( ( 𝑧 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) , ℝ , < ) ) ‘ 𝑛 ) , ( ( 𝑧 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑤 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑤 ) Isom < , ◡ < ( 𝑤 , ( 𝐹 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ) } ) , ℝ , < ) ) ‘ 𝑛 ) 〉 ) |
41 |
1 2 25 39 40 3 4 5
|
erdszelem11 |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |