| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erdsze2.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 2 |
|
erdsze2.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
| 3 |
|
erdsze2.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ ℝ ) |
| 4 |
|
erdsze2.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 5 |
|
erdsze2lem.n |
⊢ 𝑁 = ( ( 𝑅 − 1 ) · ( 𝑆 − 1 ) ) |
| 6 |
|
erdsze2lem.l |
⊢ ( 𝜑 → 𝑁 < ( ♯ ‘ 𝐴 ) ) |
| 7 |
|
erdsze2lem.g |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ) |
| 8 |
|
erdsze2lem.i |
⊢ ( 𝜑 → 𝐺 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝐺 ) ) |
| 9 |
|
nnm1nn0 |
⊢ ( 𝑅 ∈ ℕ → ( 𝑅 − 1 ) ∈ ℕ0 ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → ( 𝑅 − 1 ) ∈ ℕ0 ) |
| 11 |
|
nnm1nn0 |
⊢ ( 𝑆 ∈ ℕ → ( 𝑆 − 1 ) ∈ ℕ0 ) |
| 12 |
2 11
|
syl |
⊢ ( 𝜑 → ( 𝑆 − 1 ) ∈ ℕ0 ) |
| 13 |
10 12
|
nn0mulcld |
⊢ ( 𝜑 → ( ( 𝑅 − 1 ) · ( 𝑆 − 1 ) ) ∈ ℕ0 ) |
| 14 |
5 13
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 15 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 17 |
|
f1co |
⊢ ( ( 𝐹 : 𝐴 –1-1→ ℝ ∧ 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ) → ( 𝐹 ∘ 𝐺 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ℝ ) |
| 18 |
3 7 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ ℝ ) |
| 19 |
14
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 20 |
19
|
ltp1d |
⊢ ( 𝜑 → 𝑁 < ( 𝑁 + 1 ) ) |
| 21 |
5 20
|
eqbrtrrid |
⊢ ( 𝜑 → ( ( 𝑅 − 1 ) · ( 𝑆 − 1 ) ) < ( 𝑁 + 1 ) ) |
| 22 |
16 18 1 2 21
|
erdsze |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝒫 ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝑅 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) ) |
| 23 |
|
velpw |
⊢ ( 𝑡 ∈ 𝒫 ( 1 ... ( 𝑁 + 1 ) ) ↔ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 24 |
|
imassrn |
⊢ ( 𝐺 “ 𝑡 ) ⊆ ran 𝐺 |
| 25 |
|
f1f |
⊢ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 → 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ) |
| 26 |
7 25
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ) |
| 27 |
26
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ 𝐴 ) |
| 28 |
24 27
|
sstrid |
⊢ ( 𝜑 → ( 𝐺 “ 𝑡 ) ⊆ 𝐴 ) |
| 29 |
|
reex |
⊢ ℝ ∈ V |
| 30 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ∈ V ) → 𝐴 ∈ V ) |
| 31 |
4 29 30
|
sylancl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 32 |
|
elpw2g |
⊢ ( 𝐴 ∈ V → ( ( 𝐺 “ 𝑡 ) ∈ 𝒫 𝐴 ↔ ( 𝐺 “ 𝑡 ) ⊆ 𝐴 ) ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 “ 𝑡 ) ∈ 𝒫 𝐴 ↔ ( 𝐺 “ 𝑡 ) ⊆ 𝐴 ) ) |
| 34 |
28 33
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 “ 𝑡 ) ∈ 𝒫 𝐴 ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 “ 𝑡 ) ∈ 𝒫 𝐴 ) |
| 36 |
|
vex |
⊢ 𝑡 ∈ V |
| 37 |
36
|
f1imaen |
⊢ ( ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 “ 𝑡 ) ≈ 𝑡 ) |
| 38 |
7 37
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 “ 𝑡 ) ≈ 𝑡 ) |
| 39 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 41 |
|
ssfi |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑡 ∈ Fin ) |
| 42 |
39 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑡 ∈ Fin ) |
| 43 |
|
enfii |
⊢ ( ( 𝑡 ∈ Fin ∧ ( 𝐺 “ 𝑡 ) ≈ 𝑡 ) → ( 𝐺 “ 𝑡 ) ∈ Fin ) |
| 44 |
42 38 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 “ 𝑡 ) ∈ Fin ) |
| 45 |
|
hashen |
⊢ ( ( ( 𝐺 “ 𝑡 ) ∈ Fin ∧ 𝑡 ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) = ( ♯ ‘ 𝑡 ) ↔ ( 𝐺 “ 𝑡 ) ≈ 𝑡 ) ) |
| 46 |
44 42 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) = ( ♯ ‘ 𝑡 ) ↔ ( 𝐺 “ 𝑡 ) ≈ 𝑡 ) ) |
| 47 |
38 46
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) = ( ♯ ‘ 𝑡 ) ) |
| 48 |
47
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑅 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ↔ 𝑅 ≤ ( ♯ ‘ 𝑡 ) ) ) |
| 49 |
48
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑅 ≤ ( ♯ ‘ 𝑡 ) → 𝑅 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ) ) |
| 50 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) → 𝐺 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝐺 ) ) |
| 51 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 52 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑥 ∈ 𝑡 ) |
| 53 |
51 52
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 54 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑦 ∈ 𝑡 ) |
| 55 |
51 54
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 56 |
|
isorel |
⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( 𝑁 + 1 ) ) , ran 𝐺 ) ∧ ( 𝑥 ∈ ( 1 ... ( 𝑁 + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ) → ( 𝑥 < 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 57 |
50 53 55 56
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) → ( 𝑥 < 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 58 |
57
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) → ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 59 |
58
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 60 |
|
elfznn |
⊢ ( 𝑡 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝑡 ∈ ℕ ) |
| 61 |
60
|
nnred |
⊢ ( 𝑡 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝑡 ∈ ℝ ) |
| 62 |
61
|
ssriv |
⊢ ( 1 ... ( 𝑁 + 1 ) ) ⊆ ℝ |
| 63 |
62
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 1 ... ( 𝑁 + 1 ) ) ⊆ ℝ ) |
| 64 |
|
ltso |
⊢ < Or ℝ |
| 65 |
|
soss |
⊢ ( ( 1 ... ( 𝑁 + 1 ) ) ⊆ ℝ → ( < Or ℝ → < Or ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 66 |
63 64 65
|
mpisyl |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → < Or ( 1 ... ( 𝑁 + 1 ) ) ) |
| 67 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝐴 ⊆ ℝ ) |
| 68 |
|
soss |
⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) |
| 69 |
67 64 68
|
mpisyl |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → < Or 𝐴 ) |
| 70 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ) |
| 71 |
|
soisores |
⊢ ( ( ( < Or ( 1 ... ( 𝑁 + 1 ) ) ∧ < Or 𝐴 ) ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) ) → ( ( 𝐺 ↾ 𝑡 ) Isom < , < ( 𝑡 , ( 𝐺 “ 𝑡 ) ) ↔ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 72 |
66 69 70 40 71
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ↾ 𝑡 ) Isom < , < ( 𝑡 , ( 𝐺 “ 𝑡 ) ) ↔ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 73 |
59 72
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ 𝑡 ) Isom < , < ( 𝑡 , ( 𝐺 “ 𝑡 ) ) ) |
| 74 |
|
isocnv |
⊢ ( ( 𝐺 ↾ 𝑡 ) Isom < , < ( 𝑡 , ( 𝐺 “ 𝑡 ) ) → ◡ ( 𝐺 ↾ 𝑡 ) Isom < , < ( ( 𝐺 “ 𝑡 ) , 𝑡 ) ) |
| 75 |
73 74
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ◡ ( 𝐺 ↾ 𝑡 ) Isom < , < ( ( 𝐺 “ 𝑡 ) , 𝑡 ) ) |
| 76 |
|
isotr |
⊢ ( ( ◡ ( 𝐺 ↾ 𝑡 ) Isom < , < ( ( 𝐺 “ 𝑡 ) , 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) |
| 77 |
76
|
ex |
⊢ ( ◡ ( 𝐺 ↾ 𝑡 ) Isom < , < ( ( 𝐺 “ 𝑡 ) , 𝑡 ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) |
| 78 |
75 77
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) |
| 79 |
|
resco |
⊢ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) = ( 𝐹 ∘ ( 𝐺 ↾ 𝑡 ) ) |
| 80 |
79
|
coeq1i |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) = ( ( 𝐹 ∘ ( 𝐺 ↾ 𝑡 ) ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) |
| 81 |
|
coass |
⊢ ( ( 𝐹 ∘ ( 𝐺 ↾ 𝑡 ) ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) = ( 𝐹 ∘ ( ( 𝐺 ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) ) |
| 82 |
80 81
|
eqtri |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) = ( 𝐹 ∘ ( ( 𝐺 ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) ) |
| 83 |
|
f1ores |
⊢ ( ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) –1-1→ 𝐴 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ 𝑡 ) : 𝑡 –1-1-onto→ ( 𝐺 “ 𝑡 ) ) |
| 84 |
7 83
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ 𝑡 ) : 𝑡 –1-1-onto→ ( 𝐺 “ 𝑡 ) ) |
| 85 |
|
f1ococnv2 |
⊢ ( ( 𝐺 ↾ 𝑡 ) : 𝑡 –1-1-onto→ ( 𝐺 “ 𝑡 ) → ( ( 𝐺 ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) = ( I ↾ ( 𝐺 “ 𝑡 ) ) ) |
| 86 |
84 85
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) = ( I ↾ ( 𝐺 “ 𝑡 ) ) ) |
| 87 |
86
|
coeq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ∘ ( ( 𝐺 ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) ) = ( 𝐹 ∘ ( I ↾ ( 𝐺 “ 𝑡 ) ) ) ) |
| 88 |
|
coires1 |
⊢ ( 𝐹 ∘ ( I ↾ ( 𝐺 “ 𝑡 ) ) ) = ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) |
| 89 |
87 88
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ∘ ( ( 𝐺 ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) ) = ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) ) |
| 90 |
82 89
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) = ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) ) |
| 91 |
|
isoeq1 |
⊢ ( ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) = ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) → ( ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) |
| 92 |
90 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) |
| 93 |
|
imaco |
⊢ ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) = ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) |
| 94 |
|
isoeq5 |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) = ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) → ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 95 |
93 94
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) |
| 96 |
92 95
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 97 |
78 96
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) → ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 98 |
49 97
|
anim12d |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑅 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) → ( 𝑅 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) ) |
| 99 |
47
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑆 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ↔ 𝑆 ≤ ( ♯ ‘ 𝑡 ) ) ) |
| 100 |
99
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑆 ≤ ( ♯ ‘ 𝑡 ) → 𝑆 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ) ) |
| 101 |
|
isotr |
⊢ ( ( ◡ ( 𝐺 ↾ 𝑡 ) Isom < , < ( ( 𝐺 “ 𝑡 ) , 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) |
| 102 |
101
|
ex |
⊢ ( ◡ ( 𝐺 ↾ 𝑡 ) Isom < , < ( ( 𝐺 “ 𝑡 ) , 𝑡 ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) |
| 103 |
75 102
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) |
| 104 |
|
isoeq1 |
⊢ ( ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) = ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) → ( ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) |
| 105 |
90 104
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) |
| 106 |
|
isoeq5 |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) = ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) → ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 107 |
93 106
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) |
| 108 |
105 107
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) ∘ ◡ ( 𝐺 ↾ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 109 |
103 108
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) → ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 110 |
100 109
|
anim12d |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑆 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) → ( 𝑆 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) ) |
| 111 |
98 110
|
orim12d |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑅 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) → ( ( 𝑅 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) ) ) |
| 112 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ) |
| 113 |
112
|
breq2d |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ↔ 𝑅 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ) ) |
| 114 |
|
reseq2 |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( 𝐹 ↾ 𝑠 ) = ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) ) |
| 115 |
|
isoeq1 |
⊢ ( ( 𝐹 ↾ 𝑠 ) = ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) → ( ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) |
| 116 |
114 115
|
syl |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) |
| 117 |
|
isoeq4 |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ 𝑠 ) ) ) ) |
| 118 |
|
imaeq2 |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) |
| 119 |
|
isoeq5 |
⊢ ( ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) → ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 120 |
118 119
|
syl |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 121 |
116 117 120
|
3bitrd |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 122 |
113 121
|
anbi12d |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ↔ ( 𝑅 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) ) |
| 123 |
112
|
breq2d |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ↔ 𝑆 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ) ) |
| 124 |
|
isoeq1 |
⊢ ( ( 𝐹 ↾ 𝑠 ) = ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) → ( ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) |
| 125 |
114 124
|
syl |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) |
| 126 |
|
isoeq4 |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ 𝑠 ) ) ) ) |
| 127 |
|
isoeq5 |
⊢ ( ( 𝐹 “ 𝑠 ) = ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) → ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 128 |
118 127
|
syl |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 129 |
125 126 128
|
3bitrd |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ↔ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) |
| 130 |
123 129
|
anbi12d |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ↔ ( 𝑆 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) ) |
| 131 |
122 130
|
orbi12d |
⊢ ( 𝑠 = ( 𝐺 “ 𝑡 ) → ( ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ↔ ( ( 𝑅 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) ) ) |
| 132 |
131
|
rspcev |
⊢ ( ( ( 𝐺 “ 𝑡 ) ∈ 𝒫 𝐴 ∧ ( ( 𝑅 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ ( 𝐺 “ 𝑡 ) ) ∧ ( 𝐹 ↾ ( 𝐺 “ 𝑡 ) ) Isom < , ◡ < ( ( 𝐺 “ 𝑡 ) , ( 𝐹 “ ( 𝐺 “ 𝑡 ) ) ) ) ) ) → ∃ 𝑠 ∈ 𝒫 𝐴 ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |
| 133 |
35 111 132
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑡 ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑅 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) → ∃ 𝑠 ∈ 𝒫 𝐴 ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) ) |
| 134 |
23 133
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑅 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) → ∃ 𝑠 ∈ 𝒫 𝐴 ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) ) |
| 135 |
134
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝒫 ( 1 ... ( 𝑁 + 1 ) ) ( ( 𝑅 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑡 ) ∧ ( ( 𝐹 ∘ 𝐺 ) ↾ 𝑡 ) Isom < , ◡ < ( 𝑡 , ( ( 𝐹 ∘ 𝐺 ) “ 𝑡 ) ) ) ) → ∃ 𝑠 ∈ 𝒫 𝐴 ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) ) |
| 136 |
22 135
|
mpd |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝒫 𝐴 ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |