Step |
Hyp |
Ref |
Expression |
1 |
|
erdszelem1.1 |
⊢ 𝑆 = { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } |
2 |
|
ovex |
⊢ ( 1 ... 𝐴 ) ∈ V |
3 |
2
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 ( 1 ... 𝐴 ) ↔ 𝑋 ⊆ ( 1 ... 𝐴 ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑋 ∈ 𝒫 ( 1 ... 𝐴 ) ∧ ( ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ) ↔ ( 𝑋 ⊆ ( 1 ... 𝐴 ) ∧ ( ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ) ) |
5 |
|
reseq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ 𝑋 ) ) |
6 |
|
isoeq1 |
⊢ ( ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ 𝑋 ) → ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ↔ ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ↔ ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ) ) |
8 |
|
isoeq4 |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ↔ ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑦 ) ) ) ) |
9 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 “ 𝑦 ) = ( 𝐹 “ 𝑋 ) ) |
10 |
|
isoeq5 |
⊢ ( ( 𝐹 “ 𝑦 ) = ( 𝐹 “ 𝑋 ) → ( ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑦 ) ) ↔ ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑦 ) ) ↔ ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ) ) |
12 |
7 8 11
|
3bitrd |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ↔ ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ) ) |
13 |
|
eleq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑋 ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) ↔ ( ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ) ) |
15 |
14 1
|
elrab2 |
⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ∈ 𝒫 ( 1 ... 𝐴 ) ∧ ( ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ) ) |
16 |
|
3anass |
⊢ ( ( 𝑋 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ↔ ( 𝑋 ⊆ ( 1 ... 𝐴 ) ∧ ( ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ) ) |
17 |
4 15 16
|
3bitr4i |
⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑋 ) Isom < , 𝑂 ( 𝑋 , ( 𝐹 “ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ) |