Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
erdsze.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
3 |
|
erdszelem.i |
⊢ 𝐼 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
4 |
|
erdszelem.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
5 |
|
erdszelem.t |
⊢ 𝑇 = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ 〈 ( 𝐼 ‘ 𝑛 ) , ( 𝐽 ‘ 𝑛 ) 〉 ) |
6 |
|
erdszelem.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
7 |
|
erdszelem.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
8 |
|
erdszelem.m |
⊢ ( 𝜑 → ( ( 𝑅 − 1 ) · ( 𝑆 − 1 ) ) < 𝑁 ) |
9 |
1 2 3 4 5 6 7 8
|
erdszelem10 |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ∨ ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ) ) → 𝑁 ∈ ℕ ) |
11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ) ) → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
12 |
|
ltso |
⊢ < Or ℝ |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ) ) → 𝑚 ∈ ( 1 ... 𝑁 ) ) |
14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ) ) → 𝑅 ∈ ℕ ) |
15 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ) ) → ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ) |
16 |
10 11 3 12 13 14 15
|
erdszelem7 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ) ) → ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) |
17 |
16
|
expr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) → ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |
18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) ) → 𝑁 ∈ ℕ ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) ) → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
20 |
|
gtso |
⊢ ◡ < Or ℝ |
21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) ) → 𝑚 ∈ ( 1 ... 𝑁 ) ) |
22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) ) → 𝑆 ∈ ℕ ) |
23 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) ) → ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) |
24 |
18 19 4 20 21 22 23
|
erdszelem7 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) ) → ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) |
25 |
24
|
expr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) → ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |
26 |
17 25
|
orim12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( ( ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ∨ ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) → ( ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) ) |
27 |
26
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ¬ ( 𝐼 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ∨ ¬ ( 𝐽 ‘ 𝑚 ) ∈ ( 1 ... ( 𝑆 − 1 ) ) ) → ( ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) ) |
28 |
9 27
|
mpd |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |
29 |
|
r19.43 |
⊢ ( ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ↔ ( ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |
30 |
28 29
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ∨ ( 𝑆 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , ◡ < ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |