Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
β’ ( π β π β β ) |
2 |
|
erdsze.f |
β’ ( π β πΉ : ( 1 ... π ) β1-1β β ) |
3 |
|
erdszelem.k |
β’ πΎ = ( π₯ β ( 1 ... π ) β¦ sup ( ( β― β { π¦ β π« ( 1 ... π₯ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π₯ β π¦ ) } ) , β , < ) ) |
4 |
|
erdszelem.o |
β’ π Or β |
5 |
|
elfznn |
β’ ( π΄ β ( 1 ... π ) β π΄ β β ) |
6 |
5
|
adantl |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β π΄ β β ) |
7 |
|
elfz1end |
β’ ( π΄ β β β π΄ β ( 1 ... π΄ ) ) |
8 |
6 7
|
sylib |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β π΄ β ( 1 ... π΄ ) ) |
9 |
8
|
snssd |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β { π΄ } β ( 1 ... π΄ ) ) |
10 |
|
elsni |
β’ ( π₯ β { π΄ } β π₯ = π΄ ) |
11 |
|
elsni |
β’ ( π¦ β { π΄ } β π¦ = π΄ ) |
12 |
10 11
|
breqan12d |
β’ ( ( π₯ β { π΄ } β§ π¦ β { π΄ } ) β ( π₯ < π¦ β π΄ < π΄ ) ) |
13 |
12
|
adantl |
β’ ( ( ( π β§ π΄ β ( 1 ... π ) ) β§ ( π₯ β { π΄ } β§ π¦ β { π΄ } ) ) β ( π₯ < π¦ β π΄ < π΄ ) ) |
14 |
|
fzssuz |
β’ ( 1 ... π ) β ( β€β₯ β 1 ) |
15 |
|
uzssz |
β’ ( β€β₯ β 1 ) β β€ |
16 |
|
zssre |
β’ β€ β β |
17 |
15 16
|
sstri |
β’ ( β€β₯ β 1 ) β β |
18 |
14 17
|
sstri |
β’ ( 1 ... π ) β β |
19 |
|
simpr |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β π΄ β ( 1 ... π ) ) |
20 |
19
|
adantr |
β’ ( ( ( π β§ π΄ β ( 1 ... π ) ) β§ ( π₯ β { π΄ } β§ π¦ β { π΄ } ) ) β π΄ β ( 1 ... π ) ) |
21 |
18 20
|
sselid |
β’ ( ( ( π β§ π΄ β ( 1 ... π ) ) β§ ( π₯ β { π΄ } β§ π¦ β { π΄ } ) ) β π΄ β β ) |
22 |
21
|
ltnrd |
β’ ( ( ( π β§ π΄ β ( 1 ... π ) ) β§ ( π₯ β { π΄ } β§ π¦ β { π΄ } ) ) β Β¬ π΄ < π΄ ) |
23 |
22
|
pm2.21d |
β’ ( ( ( π β§ π΄ β ( 1 ... π ) ) β§ ( π₯ β { π΄ } β§ π¦ β { π΄ } ) ) β ( π΄ < π΄ β ( πΉ β π₯ ) π ( πΉ β π¦ ) ) ) |
24 |
13 23
|
sylbid |
β’ ( ( ( π β§ π΄ β ( 1 ... π ) ) β§ ( π₯ β { π΄ } β§ π¦ β { π΄ } ) ) β ( π₯ < π¦ β ( πΉ β π₯ ) π ( πΉ β π¦ ) ) ) |
25 |
24
|
ralrimivva |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β β π₯ β { π΄ } β π¦ β { π΄ } ( π₯ < π¦ β ( πΉ β π₯ ) π ( πΉ β π¦ ) ) ) |
26 |
|
f1f |
β’ ( πΉ : ( 1 ... π ) β1-1β β β πΉ : ( 1 ... π ) βΆ β ) |
27 |
2 26
|
syl |
β’ ( π β πΉ : ( 1 ... π ) βΆ β ) |
28 |
27
|
adantr |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β πΉ : ( 1 ... π ) βΆ β ) |
29 |
19
|
snssd |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β { π΄ } β ( 1 ... π ) ) |
30 |
|
ltso |
β’ < Or β |
31 |
|
soss |
β’ ( ( 1 ... π ) β β β ( < Or β β < Or ( 1 ... π ) ) ) |
32 |
18 30 31
|
mp2 |
β’ < Or ( 1 ... π ) |
33 |
|
soisores |
β’ ( ( ( < Or ( 1 ... π ) β§ π Or β ) β§ ( πΉ : ( 1 ... π ) βΆ β β§ { π΄ } β ( 1 ... π ) ) ) β ( ( πΉ βΎ { π΄ } ) Isom < , π ( { π΄ } , ( πΉ β { π΄ } ) ) β β π₯ β { π΄ } β π¦ β { π΄ } ( π₯ < π¦ β ( πΉ β π₯ ) π ( πΉ β π¦ ) ) ) ) |
34 |
32 4 33
|
mpanl12 |
β’ ( ( πΉ : ( 1 ... π ) βΆ β β§ { π΄ } β ( 1 ... π ) ) β ( ( πΉ βΎ { π΄ } ) Isom < , π ( { π΄ } , ( πΉ β { π΄ } ) ) β β π₯ β { π΄ } β π¦ β { π΄ } ( π₯ < π¦ β ( πΉ β π₯ ) π ( πΉ β π¦ ) ) ) ) |
35 |
28 29 34
|
syl2anc |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β ( ( πΉ βΎ { π΄ } ) Isom < , π ( { π΄ } , ( πΉ β { π΄ } ) ) β β π₯ β { π΄ } β π¦ β { π΄ } ( π₯ < π¦ β ( πΉ β π₯ ) π ( πΉ β π¦ ) ) ) ) |
36 |
25 35
|
mpbird |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β ( πΉ βΎ { π΄ } ) Isom < , π ( { π΄ } , ( πΉ β { π΄ } ) ) ) |
37 |
|
snidg |
β’ ( π΄ β ( 1 ... π ) β π΄ β { π΄ } ) |
38 |
37
|
adantl |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β π΄ β { π΄ } ) |
39 |
|
eqid |
β’ { π¦ β π« ( 1 ... π΄ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π΄ β π¦ ) } = { π¦ β π« ( 1 ... π΄ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π΄ β π¦ ) } |
40 |
39
|
erdszelem1 |
β’ ( { π΄ } β { π¦ β π« ( 1 ... π΄ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π΄ β π¦ ) } β ( { π΄ } β ( 1 ... π΄ ) β§ ( πΉ βΎ { π΄ } ) Isom < , π ( { π΄ } , ( πΉ β { π΄ } ) ) β§ π΄ β { π΄ } ) ) |
41 |
9 36 38 40
|
syl3anbrc |
β’ ( ( π β§ π΄ β ( 1 ... π ) ) β { π΄ } β { π¦ β π« ( 1 ... π΄ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π΄ β π¦ ) } ) |