Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
erdsze.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
3 |
|
erdszelem.k |
⊢ 𝐾 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
4 |
|
erdszelem.o |
⊢ 𝑂 Or ℝ |
5 |
|
elfznn |
⊢ ( 𝐴 ∈ ( 1 ... 𝑁 ) → 𝐴 ∈ ℕ ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ℕ ) |
7 |
|
elfz1end |
⊢ ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( 1 ... 𝐴 ) ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ( 1 ... 𝐴 ) ) |
9 |
8
|
snssd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → { 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
10 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) |
11 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝐴 } → 𝑦 = 𝐴 ) |
12 |
10 11
|
breqan12d |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) → ( 𝑥 < 𝑦 ↔ 𝐴 < 𝐴 ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ) → ( 𝑥 < 𝑦 ↔ 𝐴 < 𝐴 ) ) |
14 |
|
fzssuz |
⊢ ( 1 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 1 ) |
15 |
|
uzssz |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℤ |
16 |
|
zssre |
⊢ ℤ ⊆ ℝ |
17 |
15 16
|
sstri |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℝ |
18 |
14 17
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ℝ |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ( 1 ... 𝑁 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ) → 𝐴 ∈ ( 1 ... 𝑁 ) ) |
21 |
18 20
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ) → 𝐴 ∈ ℝ ) |
22 |
21
|
ltnrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ) → ¬ 𝐴 < 𝐴 ) |
23 |
22
|
pm2.21d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ) → ( 𝐴 < 𝐴 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
24 |
13 23
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ) → ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
25 |
24
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
26 |
|
f1f |
⊢ ( 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ → 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
27 |
2 26
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
29 |
19
|
snssd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → { 𝐴 } ⊆ ( 1 ... 𝑁 ) ) |
30 |
|
ltso |
⊢ < Or ℝ |
31 |
|
soss |
⊢ ( ( 1 ... 𝑁 ) ⊆ ℝ → ( < Or ℝ → < Or ( 1 ... 𝑁 ) ) ) |
32 |
18 30 31
|
mp2 |
⊢ < Or ( 1 ... 𝑁 ) |
33 |
|
soisores |
⊢ ( ( ( < Or ( 1 ... 𝑁 ) ∧ 𝑂 Or ℝ ) ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ ∧ { 𝐴 } ⊆ ( 1 ... 𝑁 ) ) ) → ( ( 𝐹 ↾ { 𝐴 } ) Isom < , 𝑂 ( { 𝐴 } , ( 𝐹 “ { 𝐴 } ) ) ↔ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) ) |
34 |
32 4 33
|
mpanl12 |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ ∧ { 𝐴 } ⊆ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ↾ { 𝐴 } ) Isom < , 𝑂 ( { 𝐴 } , ( 𝐹 “ { 𝐴 } ) ) ↔ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) ) |
35 |
28 29 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ↾ { 𝐴 } ) Isom < , 𝑂 ( { 𝐴 } , ( 𝐹 “ { 𝐴 } ) ) ↔ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) ) |
36 |
25 35
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ↾ { 𝐴 } ) Isom < , 𝑂 ( { 𝐴 } , ( 𝐹 “ { 𝐴 } ) ) ) |
37 |
|
snidg |
⊢ ( 𝐴 ∈ ( 1 ... 𝑁 ) → 𝐴 ∈ { 𝐴 } ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ { 𝐴 } ) |
39 |
|
eqid |
⊢ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } = { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } |
40 |
39
|
erdszelem1 |
⊢ ( { 𝐴 } ∈ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ↔ ( { 𝐴 } ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ { 𝐴 } ) Isom < , 𝑂 ( { 𝐴 } , ( 𝐹 “ { 𝐴 } ) ) ∧ 𝐴 ∈ { 𝐴 } ) ) |
41 |
9 36 38 40
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → { 𝐴 } ∈ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ) |