Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
erdsze.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
3 |
|
erdszelem.k |
⊢ 𝐾 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
4 |
|
erdszelem.o |
⊢ 𝑂 Or ℝ |
5 |
|
ltso |
⊢ < Or ℝ |
6 |
5
|
supex |
⊢ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ∈ V |
7 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ∈ V ) |
8 |
3
|
a1i |
⊢ ( 𝜑 → 𝐾 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) ) |
9 |
|
eqid |
⊢ { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } = { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } |
10 |
9
|
erdszelem2 |
⊢ ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } ) ∈ Fin ∧ ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } ) ⊆ ℕ ) |
11 |
10
|
simpri |
⊢ ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } ) ⊆ ℕ |
12 |
1 2 3 4
|
erdszelem5 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... 𝑁 ) ) → ( 𝐾 ‘ 𝑧 ) ∈ ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑧 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) } ) ) |
13 |
11 12
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... 𝑁 ) ) → ( 𝐾 ‘ 𝑧 ) ∈ ℕ ) |
14 |
7 8 13
|
fmpt2d |
⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) ⟶ ℕ ) |