Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
β’ ( π β π β β ) |
2 |
|
erdsze.f |
β’ ( π β πΉ : ( 1 ... π ) β1-1β β ) |
3 |
|
erdszelem.k |
β’ πΎ = ( π₯ β ( 1 ... π ) β¦ sup ( ( β― β { π¦ β π« ( 1 ... π₯ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π₯ β π¦ ) } ) , β , < ) ) |
4 |
|
erdszelem.o |
β’ π Or β |
5 |
|
ltso |
β’ < Or β |
6 |
5
|
supex |
β’ sup ( ( β― β { π¦ β π« ( 1 ... π₯ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π₯ β π¦ ) } ) , β , < ) β V |
7 |
6
|
a1i |
β’ ( ( π β§ π₯ β ( 1 ... π ) ) β sup ( ( β― β { π¦ β π« ( 1 ... π₯ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π₯ β π¦ ) } ) , β , < ) β V ) |
8 |
3
|
a1i |
β’ ( π β πΎ = ( π₯ β ( 1 ... π ) β¦ sup ( ( β― β { π¦ β π« ( 1 ... π₯ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π₯ β π¦ ) } ) , β , < ) ) ) |
9 |
|
eqid |
β’ { π¦ β π« ( 1 ... π§ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π§ β π¦ ) } = { π¦ β π« ( 1 ... π§ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π§ β π¦ ) } |
10 |
9
|
erdszelem2 |
β’ ( ( β― β { π¦ β π« ( 1 ... π§ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π§ β π¦ ) } ) β Fin β§ ( β― β { π¦ β π« ( 1 ... π§ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π§ β π¦ ) } ) β β ) |
11 |
10
|
simpri |
β’ ( β― β { π¦ β π« ( 1 ... π§ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π§ β π¦ ) } ) β β |
12 |
1 2 3 4
|
erdszelem5 |
β’ ( ( π β§ π§ β ( 1 ... π ) ) β ( πΎ β π§ ) β ( β― β { π¦ β π« ( 1 ... π§ ) β£ ( ( πΉ βΎ π¦ ) Isom < , π ( π¦ , ( πΉ β π¦ ) ) β§ π§ β π¦ ) } ) ) |
13 |
11 12
|
sselid |
β’ ( ( π β§ π§ β ( 1 ... π ) ) β ( πΎ β π§ ) β β ) |
14 |
7 8 13
|
fmpt2d |
β’ ( π β πΎ : ( 1 ... π ) βΆ β ) |