Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
erdsze.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
3 |
|
erdszelem.k |
⊢ 𝐾 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
4 |
|
erdszelem.o |
⊢ 𝑂 Or ℝ |
5 |
|
erdszelem.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 1 ... 𝑁 ) ) |
6 |
|
erdszelem7.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
7 |
|
erdszelem7.m |
⊢ ( 𝜑 → ¬ ( 𝐾 ‘ 𝐴 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ) |
8 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
9 |
|
ffun |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → Fun ♯ ) |
10 |
8 9
|
ax-mp |
⊢ Fun ♯ |
11 |
1 2 3 4
|
erdszelem5 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 1 ... 𝑁 ) ) → ( 𝐾 ‘ 𝐴 ) ∈ ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ) ) |
12 |
5 11
|
mpdan |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐴 ) ∈ ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ) ) |
13 |
|
fvelima |
⊢ ( ( Fun ♯ ∧ ( 𝐾 ‘ 𝐴 ) ∈ ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ) ) → ∃ 𝑠 ∈ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) |
14 |
10 12 13
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑠 ∈ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) |
15 |
|
eqid |
⊢ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } = { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } |
16 |
15
|
erdszelem1 |
⊢ ( 𝑠 ∈ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ↔ ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ) |
17 |
|
simprl1 |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) ) → 𝑠 ⊆ ( 1 ... 𝐴 ) ) |
18 |
|
elfzuz3 |
⊢ ( 𝐴 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
19 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 1 ... 𝐴 ) ⊆ ( 1 ... 𝑁 ) ) |
20 |
5 18 19
|
3syl |
⊢ ( 𝜑 → ( 1 ... 𝐴 ) ⊆ ( 1 ... 𝑁 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) ) → ( 1 ... 𝐴 ) ⊆ ( 1 ... 𝑁 ) ) |
22 |
17 21
|
sstrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) ) → 𝑠 ⊆ ( 1 ... 𝑁 ) ) |
23 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ↔ 𝑠 ⊆ ( 1 ... 𝑁 ) ) |
24 |
22 23
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) ) → 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ) |
25 |
1 2 3 4
|
erdszelem6 |
⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) ⟶ ℕ ) |
26 |
25 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐴 ) ∈ ℕ ) |
27 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
28 |
26 27
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
29 |
|
nnz |
⊢ ( 𝑅 ∈ ℕ → 𝑅 ∈ ℤ ) |
30 |
|
peano2zm |
⊢ ( 𝑅 ∈ ℤ → ( 𝑅 − 1 ) ∈ ℤ ) |
31 |
6 29 30
|
3syl |
⊢ ( 𝜑 → ( 𝑅 − 1 ) ∈ ℤ ) |
32 |
|
elfz5 |
⊢ ( ( ( 𝐾 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑅 − 1 ) ∈ ℤ ) → ( ( 𝐾 ‘ 𝐴 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ↔ ( 𝐾 ‘ 𝐴 ) ≤ ( 𝑅 − 1 ) ) ) |
33 |
28 31 32
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐴 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ↔ ( 𝐾 ‘ 𝐴 ) ≤ ( 𝑅 − 1 ) ) ) |
34 |
|
nnltlem1 |
⊢ ( ( ( 𝐾 ‘ 𝐴 ) ∈ ℕ ∧ 𝑅 ∈ ℕ ) → ( ( 𝐾 ‘ 𝐴 ) < 𝑅 ↔ ( 𝐾 ‘ 𝐴 ) ≤ ( 𝑅 − 1 ) ) ) |
35 |
26 6 34
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐴 ) < 𝑅 ↔ ( 𝐾 ‘ 𝐴 ) ≤ ( 𝑅 − 1 ) ) ) |
36 |
33 35
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐴 ) ∈ ( 1 ... ( 𝑅 − 1 ) ) ↔ ( 𝐾 ‘ 𝐴 ) < 𝑅 ) ) |
37 |
7 36
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝐾 ‘ 𝐴 ) < 𝑅 ) |
38 |
6
|
nnred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
39 |
15
|
erdszelem2 |
⊢ ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ) ∈ Fin ∧ ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ) ⊆ ℕ ) |
40 |
39
|
simpri |
⊢ ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ) ⊆ ℕ |
41 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
42 |
40 41
|
sstri |
⊢ ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ) ⊆ ℝ |
43 |
42 12
|
sselid |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐴 ) ∈ ℝ ) |
44 |
38 43
|
lenltd |
⊢ ( 𝜑 → ( 𝑅 ≤ ( 𝐾 ‘ 𝐴 ) ↔ ¬ ( 𝐾 ‘ 𝐴 ) < 𝑅 ) ) |
45 |
37 44
|
mpbird |
⊢ ( 𝜑 → 𝑅 ≤ ( 𝐾 ‘ 𝐴 ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) ) → 𝑅 ≤ ( 𝐾 ‘ 𝐴 ) ) |
47 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) |
48 |
46 47
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) ) → 𝑅 ≤ ( ♯ ‘ 𝑠 ) ) |
49 |
|
simprl2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) ) → ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) |
50 |
24 48 49
|
jca32 |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) ) → ( 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∧ ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |
51 |
50
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 1 ... 𝐴 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ∧ 𝐴 ∈ 𝑠 ) ) → ( ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) → ( 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∧ ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) ) |
52 |
16 51
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ) → ( ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) → ( 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∧ ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) ) |
53 |
52
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑠 ∈ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ∧ ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) ) → ( 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ∧ ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) ) |
54 |
53
|
reximdv2 |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ { 𝑦 ∈ 𝒫 ( 1 ... 𝐴 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , 𝑂 ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ) } ( ♯ ‘ 𝑠 ) = ( 𝐾 ‘ 𝐴 ) → ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) ) |
55 |
14 54
|
mpd |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝒫 ( 1 ... 𝑁 ) ( 𝑅 ≤ ( ♯ ‘ 𝑠 ) ∧ ( 𝐹 ↾ 𝑠 ) Isom < , 𝑂 ( 𝑠 , ( 𝐹 “ 𝑠 ) ) ) ) |