Step |
Hyp |
Ref |
Expression |
1 |
|
erdsze.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
erdsze.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
3 |
|
erdszelem.i |
⊢ 𝐼 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
4 |
|
erdszelem.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹 ↾ 𝑦 ) Isom < , ◡ < ( 𝑦 , ( 𝐹 “ 𝑦 ) ) ∧ 𝑥 ∈ 𝑦 ) } ) , ℝ , < ) ) |
5 |
|
erdszelem.t |
⊢ 𝑇 = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ 〈 ( 𝐼 ‘ 𝑛 ) , ( 𝐽 ‘ 𝑛 ) 〉 ) |
6 |
|
ltso |
⊢ < Or ℝ |
7 |
1 2 3 6
|
erdszelem6 |
⊢ ( 𝜑 → 𝐼 : ( 1 ... 𝑁 ) ⟶ ℕ ) |
8 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼 ‘ 𝑛 ) ∈ ℕ ) |
9 |
|
gtso |
⊢ ◡ < Or ℝ |
10 |
1 2 4 9
|
erdszelem6 |
⊢ ( 𝜑 → 𝐽 : ( 1 ... 𝑁 ) ⟶ ℕ ) |
11 |
10
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑛 ) ∈ ℕ ) |
12 |
|
opelxpi |
⊢ ( ( ( 𝐼 ‘ 𝑛 ) ∈ ℕ ∧ ( 𝐽 ‘ 𝑛 ) ∈ ℕ ) → 〈 ( 𝐼 ‘ 𝑛 ) , ( 𝐽 ‘ 𝑛 ) 〉 ∈ ( ℕ × ℕ ) ) |
13 |
8 11 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 〈 ( 𝐼 ‘ 𝑛 ) , ( 𝐽 ‘ 𝑛 ) 〉 ∈ ( ℕ × ℕ ) ) |
14 |
13 5
|
fmptd |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ( ℕ × ℕ ) ) |
15 |
|
fveq2 |
⊢ ( 𝑎 = 𝑧 → ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑧 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑏 = 𝑤 → ( 𝑇 ‘ 𝑏 ) = ( 𝑇 ‘ 𝑤 ) ) |
17 |
15 16
|
eqeqan12d |
⊢ ( ( 𝑎 = 𝑧 ∧ 𝑏 = 𝑤 ) → ( ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑏 ) ↔ ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) ) ) |
18 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝑧 ∧ 𝑏 = 𝑤 ) → ( 𝑎 = 𝑏 ↔ 𝑧 = 𝑤 ) ) |
19 |
17 18
|
imbi12d |
⊢ ( ( 𝑎 = 𝑧 ∧ 𝑏 = 𝑤 ) → ( ( ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑎 = 𝑤 → ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑤 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑏 = 𝑧 → ( 𝑇 ‘ 𝑏 ) = ( 𝑇 ‘ 𝑧 ) ) |
22 |
20 21
|
eqeqan12d |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑧 ) → ( ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑏 ) ↔ ( 𝑇 ‘ 𝑤 ) = ( 𝑇 ‘ 𝑧 ) ) ) |
23 |
|
eqcom |
⊢ ( ( 𝑇 ‘ 𝑤 ) = ( 𝑇 ‘ 𝑧 ) ↔ ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) ) |
24 |
22 23
|
bitrdi |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑧 ) → ( ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑏 ) ↔ ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) ) ) |
25 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑧 ) → ( 𝑎 = 𝑏 ↔ 𝑤 = 𝑧 ) ) |
26 |
|
eqcom |
⊢ ( 𝑤 = 𝑧 ↔ 𝑧 = 𝑤 ) |
27 |
25 26
|
bitrdi |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑧 ) → ( 𝑎 = 𝑏 ↔ 𝑧 = 𝑤 ) ) |
28 |
24 27
|
imbi12d |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑧 ) → ( ( ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
29 |
|
elfzelz |
⊢ ( 𝑧 ∈ ( 1 ... 𝑁 ) → 𝑧 ∈ ℤ ) |
30 |
29
|
zred |
⊢ ( 𝑧 ∈ ( 1 ... 𝑁 ) → 𝑧 ∈ ℝ ) |
31 |
30
|
ssriv |
⊢ ( 1 ... 𝑁 ) ⊆ ℝ |
32 |
31
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℝ ) |
33 |
|
biidd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
34 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → 𝑧 ∈ ( 1 ... 𝑁 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝐼 ‘ 𝑛 ) = ( 𝐼 ‘ 𝑧 ) ) |
36 |
|
fveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝐽 ‘ 𝑛 ) = ( 𝐽 ‘ 𝑧 ) ) |
37 |
35 36
|
opeq12d |
⊢ ( 𝑛 = 𝑧 → 〈 ( 𝐼 ‘ 𝑛 ) , ( 𝐽 ‘ 𝑛 ) 〉 = 〈 ( 𝐼 ‘ 𝑧 ) , ( 𝐽 ‘ 𝑧 ) 〉 ) |
38 |
|
opex |
⊢ 〈 ( 𝐼 ‘ 𝑧 ) , ( 𝐽 ‘ 𝑧 ) 〉 ∈ V |
39 |
37 5 38
|
fvmpt |
⊢ ( 𝑧 ∈ ( 1 ... 𝑁 ) → ( 𝑇 ‘ 𝑧 ) = 〈 ( 𝐼 ‘ 𝑧 ) , ( 𝐽 ‘ 𝑧 ) 〉 ) |
40 |
34 39
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( 𝑇 ‘ 𝑧 ) = 〈 ( 𝐼 ‘ 𝑧 ) , ( 𝐽 ‘ 𝑧 ) 〉 ) |
41 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → 𝑤 ∈ ( 1 ... 𝑁 ) ) |
42 |
|
fveq2 |
⊢ ( 𝑛 = 𝑤 → ( 𝐼 ‘ 𝑛 ) = ( 𝐼 ‘ 𝑤 ) ) |
43 |
|
fveq2 |
⊢ ( 𝑛 = 𝑤 → ( 𝐽 ‘ 𝑛 ) = ( 𝐽 ‘ 𝑤 ) ) |
44 |
42 43
|
opeq12d |
⊢ ( 𝑛 = 𝑤 → 〈 ( 𝐼 ‘ 𝑛 ) , ( 𝐽 ‘ 𝑛 ) 〉 = 〈 ( 𝐼 ‘ 𝑤 ) , ( 𝐽 ‘ 𝑤 ) 〉 ) |
45 |
|
opex |
⊢ 〈 ( 𝐼 ‘ 𝑤 ) , ( 𝐽 ‘ 𝑤 ) 〉 ∈ V |
46 |
44 5 45
|
fvmpt |
⊢ ( 𝑤 ∈ ( 1 ... 𝑁 ) → ( 𝑇 ‘ 𝑤 ) = 〈 ( 𝐼 ‘ 𝑤 ) , ( 𝐽 ‘ 𝑤 ) 〉 ) |
47 |
41 46
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( 𝑇 ‘ 𝑤 ) = 〈 ( 𝐼 ‘ 𝑤 ) , ( 𝐽 ‘ 𝑤 ) 〉 ) |
48 |
40 47
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) ↔ 〈 ( 𝐼 ‘ 𝑧 ) , ( 𝐽 ‘ 𝑧 ) 〉 = 〈 ( 𝐼 ‘ 𝑤 ) , ( 𝐽 ‘ 𝑤 ) 〉 ) ) |
49 |
|
fvex |
⊢ ( 𝐼 ‘ 𝑧 ) ∈ V |
50 |
|
fvex |
⊢ ( 𝐽 ‘ 𝑧 ) ∈ V |
51 |
49 50
|
opth |
⊢ ( 〈 ( 𝐼 ‘ 𝑧 ) , ( 𝐽 ‘ 𝑧 ) 〉 = 〈 ( 𝐼 ‘ 𝑤 ) , ( 𝐽 ‘ 𝑤 ) 〉 ↔ ( ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑤 ) ∧ ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑤 ) ) ) |
52 |
34 30
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → 𝑧 ∈ ℝ ) |
53 |
31 41
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → 𝑤 ∈ ℝ ) |
54 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → 𝑧 ≤ 𝑤 ) |
55 |
52 53 54
|
leltned |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( 𝑧 < 𝑤 ↔ 𝑤 ≠ 𝑧 ) ) |
56 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
57 |
|
f1fveq |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = 𝑤 ) ) |
58 |
56 34 41 57
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = 𝑤 ) ) |
59 |
58 26
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 𝑤 = 𝑧 ) ) |
60 |
59
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) ↔ 𝑤 ≠ 𝑧 ) ) |
61 |
55 60
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) ) ) |
62 |
61
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) ) |
63 |
|
f1f |
⊢ ( 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ → 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
64 |
2 63
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
66 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ( 1 ... 𝑁 ) ) |
67 |
65 66
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
68 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝑤 ∈ ( 1 ... 𝑁 ) ) |
69 |
65 68
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
70 |
67 69
|
lttri2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
71 |
62 70
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
72 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝑁 ∈ ℕ ) |
73 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ) |
74 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝑧 < 𝑤 ) |
75 |
72 73 3 6 66 68 74
|
erdszelem8 |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑤 ) → ¬ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) |
76 |
72 73 4 9 66 68 74
|
erdszelem8 |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑤 ) → ¬ ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑤 ) ) ) |
77 |
75 76
|
anim12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑤 ) ∧ ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑤 ) ) → ( ¬ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∧ ¬ ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑤 ) ) ) ) |
78 |
|
ioran |
⊢ ( ¬ ( ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) < ( 𝐹 ‘ 𝑧 ) ) ↔ ( ¬ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∧ ¬ ( 𝐹 ‘ 𝑤 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
79 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
80 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑤 ) ∈ V |
81 |
79 80
|
brcnv |
⊢ ( ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) < ( 𝐹 ‘ 𝑧 ) ) |
82 |
81
|
notbii |
⊢ ( ¬ ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( 𝐹 ‘ 𝑤 ) < ( 𝐹 ‘ 𝑧 ) ) |
83 |
82
|
anbi2i |
⊢ ( ( ¬ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∧ ¬ ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑤 ) ) ↔ ( ¬ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∧ ¬ ( 𝐹 ‘ 𝑤 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
84 |
78 83
|
bitr4i |
⊢ ( ¬ ( ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) < ( 𝐹 ‘ 𝑧 ) ) ↔ ( ¬ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∧ ¬ ( 𝐹 ‘ 𝑧 ) ◡ < ( 𝐹 ‘ 𝑤 ) ) ) |
85 |
77 84
|
syl6ibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑤 ) ∧ ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑤 ) ) → ¬ ( ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
86 |
71 85
|
mt2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ¬ ( ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑤 ) ∧ ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑤 ) ) ) |
87 |
86
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( 𝑧 < 𝑤 → ¬ ( ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑤 ) ∧ ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑤 ) ) ) ) |
88 |
55 87
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( 𝑤 ≠ 𝑧 → ¬ ( ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑤 ) ∧ ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑤 ) ) ) ) |
89 |
88
|
necon4ad |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( ( ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑤 ) ∧ ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑤 ) ) → 𝑤 = 𝑧 ) ) |
90 |
51 89
|
syl5bi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( 〈 ( 𝐼 ‘ 𝑧 ) , ( 𝐽 ‘ 𝑧 ) 〉 = 〈 ( 𝐼 ‘ 𝑤 ) , ( 𝐽 ‘ 𝑤 ) 〉 → 𝑤 = 𝑧 ) ) |
91 |
48 90
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) → 𝑤 = 𝑧 ) ) |
92 |
91 26
|
syl6ib |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ≤ 𝑤 ) ) → ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
93 |
19 28 32 33 92
|
wlogle |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
94 |
93
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 1 ... 𝑁 ) ∀ 𝑤 ∈ ( 1 ... 𝑁 ) ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
95 |
|
dff13 |
⊢ ( 𝑇 : ( 1 ... 𝑁 ) –1-1→ ( ℕ × ℕ ) ↔ ( 𝑇 : ( 1 ... 𝑁 ) ⟶ ( ℕ × ℕ ) ∧ ∀ 𝑧 ∈ ( 1 ... 𝑁 ) ∀ 𝑤 ∈ ( 1 ... 𝑁 ) ( ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
96 |
14 94 95
|
sylanbrc |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) –1-1→ ( ℕ × ℕ ) ) |