Metamath Proof Explorer


Theorem erdszelem9

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze.n ( 𝜑𝑁 ∈ ℕ )
erdsze.f ( 𝜑𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ )
erdszelem.i 𝐼 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹𝑦 ) Isom < , < ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝑥𝑦 ) } ) , ℝ , < ) )
erdszelem.j 𝐽 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹𝑦 ) Isom < , < ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝑥𝑦 ) } ) , ℝ , < ) )
erdszelem.t 𝑇 = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ⟨ ( 𝐼𝑛 ) , ( 𝐽𝑛 ) ⟩ )
Assertion erdszelem9 ( 𝜑𝑇 : ( 1 ... 𝑁 ) –1-1→ ( ℕ × ℕ ) )

Proof

Step Hyp Ref Expression
1 erdsze.n ( 𝜑𝑁 ∈ ℕ )
2 erdsze.f ( 𝜑𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ )
3 erdszelem.i 𝐼 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹𝑦 ) Isom < , < ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝑥𝑦 ) } ) , ℝ , < ) )
4 erdszelem.j 𝐽 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ sup ( ( ♯ “ { 𝑦 ∈ 𝒫 ( 1 ... 𝑥 ) ∣ ( ( 𝐹𝑦 ) Isom < , < ( 𝑦 , ( 𝐹𝑦 ) ) ∧ 𝑥𝑦 ) } ) , ℝ , < ) )
5 erdszelem.t 𝑇 = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ⟨ ( 𝐼𝑛 ) , ( 𝐽𝑛 ) ⟩ )
6 ltso < Or ℝ
7 1 2 3 6 erdszelem6 ( 𝜑𝐼 : ( 1 ... 𝑁 ) ⟶ ℕ )
8 7 ffvelrnda ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐼𝑛 ) ∈ ℕ )
9 gtso < Or ℝ
10 1 2 4 9 erdszelem6 ( 𝜑𝐽 : ( 1 ... 𝑁 ) ⟶ ℕ )
11 10 ffvelrnda ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐽𝑛 ) ∈ ℕ )
12 opelxpi ( ( ( 𝐼𝑛 ) ∈ ℕ ∧ ( 𝐽𝑛 ) ∈ ℕ ) → ⟨ ( 𝐼𝑛 ) , ( 𝐽𝑛 ) ⟩ ∈ ( ℕ × ℕ ) )
13 8 11 12 syl2anc ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ⟨ ( 𝐼𝑛 ) , ( 𝐽𝑛 ) ⟩ ∈ ( ℕ × ℕ ) )
14 13 5 fmptd ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ ( ℕ × ℕ ) )
15 fveq2 ( 𝑎 = 𝑧 → ( 𝑇𝑎 ) = ( 𝑇𝑧 ) )
16 fveq2 ( 𝑏 = 𝑤 → ( 𝑇𝑏 ) = ( 𝑇𝑤 ) )
17 15 16 eqeqan12d ( ( 𝑎 = 𝑧𝑏 = 𝑤 ) → ( ( 𝑇𝑎 ) = ( 𝑇𝑏 ) ↔ ( 𝑇𝑧 ) = ( 𝑇𝑤 ) ) )
18 eqeq12 ( ( 𝑎 = 𝑧𝑏 = 𝑤 ) → ( 𝑎 = 𝑏𝑧 = 𝑤 ) )
19 17 18 imbi12d ( ( 𝑎 = 𝑧𝑏 = 𝑤 ) → ( ( ( 𝑇𝑎 ) = ( 𝑇𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) → 𝑧 = 𝑤 ) ) )
20 fveq2 ( 𝑎 = 𝑤 → ( 𝑇𝑎 ) = ( 𝑇𝑤 ) )
21 fveq2 ( 𝑏 = 𝑧 → ( 𝑇𝑏 ) = ( 𝑇𝑧 ) )
22 20 21 eqeqan12d ( ( 𝑎 = 𝑤𝑏 = 𝑧 ) → ( ( 𝑇𝑎 ) = ( 𝑇𝑏 ) ↔ ( 𝑇𝑤 ) = ( 𝑇𝑧 ) ) )
23 eqcom ( ( 𝑇𝑤 ) = ( 𝑇𝑧 ) ↔ ( 𝑇𝑧 ) = ( 𝑇𝑤 ) )
24 22 23 bitrdi ( ( 𝑎 = 𝑤𝑏 = 𝑧 ) → ( ( 𝑇𝑎 ) = ( 𝑇𝑏 ) ↔ ( 𝑇𝑧 ) = ( 𝑇𝑤 ) ) )
25 eqeq12 ( ( 𝑎 = 𝑤𝑏 = 𝑧 ) → ( 𝑎 = 𝑏𝑤 = 𝑧 ) )
26 eqcom ( 𝑤 = 𝑧𝑧 = 𝑤 )
27 25 26 bitrdi ( ( 𝑎 = 𝑤𝑏 = 𝑧 ) → ( 𝑎 = 𝑏𝑧 = 𝑤 ) )
28 24 27 imbi12d ( ( 𝑎 = 𝑤𝑏 = 𝑧 ) → ( ( ( 𝑇𝑎 ) = ( 𝑇𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) → 𝑧 = 𝑤 ) ) )
29 elfzelz ( 𝑧 ∈ ( 1 ... 𝑁 ) → 𝑧 ∈ ℤ )
30 29 zred ( 𝑧 ∈ ( 1 ... 𝑁 ) → 𝑧 ∈ ℝ )
31 30 ssriv ( 1 ... 𝑁 ) ⊆ ℝ
32 31 a1i ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℝ )
33 biidd ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) → 𝑧 = 𝑤 ) ) )
34 simpr1 ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → 𝑧 ∈ ( 1 ... 𝑁 ) )
35 fveq2 ( 𝑛 = 𝑧 → ( 𝐼𝑛 ) = ( 𝐼𝑧 ) )
36 fveq2 ( 𝑛 = 𝑧 → ( 𝐽𝑛 ) = ( 𝐽𝑧 ) )
37 35 36 opeq12d ( 𝑛 = 𝑧 → ⟨ ( 𝐼𝑛 ) , ( 𝐽𝑛 ) ⟩ = ⟨ ( 𝐼𝑧 ) , ( 𝐽𝑧 ) ⟩ )
38 opex ⟨ ( 𝐼𝑧 ) , ( 𝐽𝑧 ) ⟩ ∈ V
39 37 5 38 fvmpt ( 𝑧 ∈ ( 1 ... 𝑁 ) → ( 𝑇𝑧 ) = ⟨ ( 𝐼𝑧 ) , ( 𝐽𝑧 ) ⟩ )
40 34 39 syl ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( 𝑇𝑧 ) = ⟨ ( 𝐼𝑧 ) , ( 𝐽𝑧 ) ⟩ )
41 simpr2 ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → 𝑤 ∈ ( 1 ... 𝑁 ) )
42 fveq2 ( 𝑛 = 𝑤 → ( 𝐼𝑛 ) = ( 𝐼𝑤 ) )
43 fveq2 ( 𝑛 = 𝑤 → ( 𝐽𝑛 ) = ( 𝐽𝑤 ) )
44 42 43 opeq12d ( 𝑛 = 𝑤 → ⟨ ( 𝐼𝑛 ) , ( 𝐽𝑛 ) ⟩ = ⟨ ( 𝐼𝑤 ) , ( 𝐽𝑤 ) ⟩ )
45 opex ⟨ ( 𝐼𝑤 ) , ( 𝐽𝑤 ) ⟩ ∈ V
46 44 5 45 fvmpt ( 𝑤 ∈ ( 1 ... 𝑁 ) → ( 𝑇𝑤 ) = ⟨ ( 𝐼𝑤 ) , ( 𝐽𝑤 ) ⟩ )
47 41 46 syl ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( 𝑇𝑤 ) = ⟨ ( 𝐼𝑤 ) , ( 𝐽𝑤 ) ⟩ )
48 40 47 eqeq12d ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) ↔ ⟨ ( 𝐼𝑧 ) , ( 𝐽𝑧 ) ⟩ = ⟨ ( 𝐼𝑤 ) , ( 𝐽𝑤 ) ⟩ ) )
49 fvex ( 𝐼𝑧 ) ∈ V
50 fvex ( 𝐽𝑧 ) ∈ V
51 49 50 opth ( ⟨ ( 𝐼𝑧 ) , ( 𝐽𝑧 ) ⟩ = ⟨ ( 𝐼𝑤 ) , ( 𝐽𝑤 ) ⟩ ↔ ( ( 𝐼𝑧 ) = ( 𝐼𝑤 ) ∧ ( 𝐽𝑧 ) = ( 𝐽𝑤 ) ) )
52 34 30 syl ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → 𝑧 ∈ ℝ )
53 31 41 sselid ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → 𝑤 ∈ ℝ )
54 simpr3 ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → 𝑧𝑤 )
55 52 53 54 leltned ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( 𝑧 < 𝑤𝑤𝑧 ) )
56 2 adantr ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ )
57 f1fveq ( ( 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ 𝑧 = 𝑤 ) )
58 56 34 41 57 syl12anc ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ 𝑧 = 𝑤 ) )
59 58 26 bitr4di ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ 𝑤 = 𝑧 ) )
60 59 necon3bid ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( ( 𝐹𝑧 ) ≠ ( 𝐹𝑤 ) ↔ 𝑤𝑧 ) )
61 55 60 bitr4d ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( 𝑧 < 𝑤 ↔ ( 𝐹𝑧 ) ≠ ( 𝐹𝑤 ) ) )
62 61 biimpa ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( 𝐹𝑧 ) ≠ ( 𝐹𝑤 ) )
63 f1f ( 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ → 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ )
64 2 63 syl ( 𝜑𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ )
65 64 ad2antrr ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ ℝ )
66 34 adantr ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ( 1 ... 𝑁 ) )
67 65 66 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( 𝐹𝑧 ) ∈ ℝ )
68 41 adantr ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝑤 ∈ ( 1 ... 𝑁 ) )
69 65 68 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( 𝐹𝑤 ) ∈ ℝ )
70 67 69 lttri2d ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( 𝐹𝑧 ) ≠ ( 𝐹𝑤 ) ↔ ( ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∨ ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ) )
71 62 70 mpbid ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∨ ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) )
72 1 ad2antrr ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝑁 ∈ ℕ )
73 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝐹 : ( 1 ... 𝑁 ) –1-1→ ℝ )
74 simpr ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → 𝑧 < 𝑤 )
75 72 73 3 6 66 68 74 erdszelem8 ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( 𝐼𝑧 ) = ( 𝐼𝑤 ) → ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ) )
76 72 73 4 9 66 68 74 erdszelem8 ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( 𝐽𝑧 ) = ( 𝐽𝑤 ) → ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ) )
77 75 76 anim12d ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( ( 𝐼𝑧 ) = ( 𝐼𝑤 ) ∧ ( 𝐽𝑧 ) = ( 𝐽𝑤 ) ) → ( ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∧ ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ) ) )
78 ioran ( ¬ ( ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∨ ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ↔ ( ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∧ ¬ ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) )
79 fvex ( 𝐹𝑧 ) ∈ V
80 fvex ( 𝐹𝑤 ) ∈ V
81 79 80 brcnv ( ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ↔ ( 𝐹𝑤 ) < ( 𝐹𝑧 ) )
82 81 notbii ( ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ↔ ¬ ( 𝐹𝑤 ) < ( 𝐹𝑧 ) )
83 82 anbi2i ( ( ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∧ ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ) ↔ ( ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∧ ¬ ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) )
84 78 83 bitr4i ( ¬ ( ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∨ ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ↔ ( ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∧ ¬ ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ) )
85 77 84 syl6ibr ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ( ( ( 𝐼𝑧 ) = ( 𝐼𝑤 ) ∧ ( 𝐽𝑧 ) = ( 𝐽𝑤 ) ) → ¬ ( ( 𝐹𝑧 ) < ( 𝐹𝑤 ) ∨ ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ) )
86 71 85 mt2d ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) ∧ 𝑧 < 𝑤 ) → ¬ ( ( 𝐼𝑧 ) = ( 𝐼𝑤 ) ∧ ( 𝐽𝑧 ) = ( 𝐽𝑤 ) ) )
87 86 ex ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( 𝑧 < 𝑤 → ¬ ( ( 𝐼𝑧 ) = ( 𝐼𝑤 ) ∧ ( 𝐽𝑧 ) = ( 𝐽𝑤 ) ) ) )
88 55 87 sylbird ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( 𝑤𝑧 → ¬ ( ( 𝐼𝑧 ) = ( 𝐼𝑤 ) ∧ ( 𝐽𝑧 ) = ( 𝐽𝑤 ) ) ) )
89 88 necon4ad ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( ( ( 𝐼𝑧 ) = ( 𝐼𝑤 ) ∧ ( 𝐽𝑧 ) = ( 𝐽𝑤 ) ) → 𝑤 = 𝑧 ) )
90 51 89 syl5bi ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( ⟨ ( 𝐼𝑧 ) , ( 𝐽𝑧 ) ⟩ = ⟨ ( 𝐼𝑤 ) , ( 𝐽𝑤 ) ⟩ → 𝑤 = 𝑧 ) )
91 48 90 sylbid ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) → 𝑤 = 𝑧 ) )
92 91 26 syl6ib ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ∧ 𝑧𝑤 ) ) → ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) → 𝑧 = 𝑤 ) )
93 19 28 32 33 92 wlogle ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... 𝑁 ) ∧ 𝑤 ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) → 𝑧 = 𝑤 ) )
94 93 ralrimivva ( 𝜑 → ∀ 𝑧 ∈ ( 1 ... 𝑁 ) ∀ 𝑤 ∈ ( 1 ... 𝑁 ) ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) → 𝑧 = 𝑤 ) )
95 dff13 ( 𝑇 : ( 1 ... 𝑁 ) –1-1→ ( ℕ × ℕ ) ↔ ( 𝑇 : ( 1 ... 𝑁 ) ⟶ ( ℕ × ℕ ) ∧ ∀ 𝑧 ∈ ( 1 ... 𝑁 ) ∀ 𝑤 ∈ ( 1 ... 𝑁 ) ( ( 𝑇𝑧 ) = ( 𝑇𝑤 ) → 𝑧 = 𝑤 ) ) )
96 14 94 95 sylanbrc ( 𝜑𝑇 : ( 1 ... 𝑁 ) –1-1→ ( ℕ × ℕ ) )