Metamath Proof Explorer


Theorem ere

Description: Euler's constant _e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005) (Revised by Steve Rodriguez, 8-Mar-2006)

Ref Expression
Assertion ere e ∈ ℝ

Proof

Step Hyp Ref Expression
1 df-e e = ( exp ‘ 1 )
2 1re 1 ∈ ℝ
3 reefcl ( 1 ∈ ℝ → ( exp ‘ 1 ) ∈ ℝ )
4 2 3 ax-mp ( exp ‘ 1 ) ∈ ℝ
5 1 4 eqeltri e ∈ ℝ