Metamath Proof Explorer


Theorem ereldm

Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ereldm.1 ( 𝜑𝑅 Er 𝑋 )
ereldm.2 ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 )
Assertion ereldm ( 𝜑 → ( 𝐴𝑋𝐵𝑋 ) )

Proof

Step Hyp Ref Expression
1 ereldm.1 ( 𝜑𝑅 Er 𝑋 )
2 ereldm.2 ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 )
3 2 neeq1d ( 𝜑 → ( [ 𝐴 ] 𝑅 ≠ ∅ ↔ [ 𝐵 ] 𝑅 ≠ ∅ ) )
4 ecdmn0 ( 𝐴 ∈ dom 𝑅 ↔ [ 𝐴 ] 𝑅 ≠ ∅ )
5 ecdmn0 ( 𝐵 ∈ dom 𝑅 ↔ [ 𝐵 ] 𝑅 ≠ ∅ )
6 3 4 5 3bitr4g ( 𝜑 → ( 𝐴 ∈ dom 𝑅𝐵 ∈ dom 𝑅 ) )
7 erdm ( 𝑅 Er 𝑋 → dom 𝑅 = 𝑋 )
8 1 7 syl ( 𝜑 → dom 𝑅 = 𝑋 )
9 8 eleq2d ( 𝜑 → ( 𝐴 ∈ dom 𝑅𝐴𝑋 ) )
10 8 eleq2d ( 𝜑 → ( 𝐵 ∈ dom 𝑅𝐵𝑋 ) )
11 6 9 10 3bitr3d ( 𝜑 → ( 𝐴𝑋𝐵𝑋 ) )