Metamath Proof Explorer


Theorem erex

Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erex ( 𝑅 Er 𝐴 → ( 𝐴𝑉𝑅 ∈ V ) )

Proof

Step Hyp Ref Expression
1 erssxp ( 𝑅 Er 𝐴𝑅 ⊆ ( 𝐴 × 𝐴 ) )
2 sqxpexg ( 𝐴𝑉 → ( 𝐴 × 𝐴 ) ∈ V )
3 ssexg ( ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ) → 𝑅 ∈ V )
4 1 2 3 syl2an ( ( 𝑅 Er 𝐴𝐴𝑉 ) → 𝑅 ∈ V )
5 4 ex ( 𝑅 Er 𝐴 → ( 𝐴𝑉𝑅 ∈ V ) )