Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | erex | ⊢ ( 𝑅 Er 𝐴 → ( 𝐴 ∈ 𝑉 → 𝑅 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erssxp | ⊢ ( 𝑅 Er 𝐴 → 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) | |
2 | sqxpexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × 𝐴 ) ∈ V ) | |
3 | ssexg | ⊢ ( ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ) → 𝑅 ∈ V ) | |
4 | 1 2 3 | syl2an | ⊢ ( ( 𝑅 Er 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝑅 ∈ V ) |
5 | 4 | ex | ⊢ ( 𝑅 Er 𝐴 → ( 𝐴 ∈ 𝑉 → 𝑅 ∈ V ) ) |