Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | erexb | ⊢ ( 𝑅 Er 𝐴 → ( 𝑅 ∈ V ↔ 𝐴 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | ⊢ ( 𝑅 ∈ V → dom 𝑅 ∈ V ) | |
| 2 | erdm | ⊢ ( 𝑅 Er 𝐴 → dom 𝑅 = 𝐴 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑅 Er 𝐴 → ( dom 𝑅 ∈ V ↔ 𝐴 ∈ V ) ) |
| 4 | 1 3 | imbitrid | ⊢ ( 𝑅 Er 𝐴 → ( 𝑅 ∈ V → 𝐴 ∈ V ) ) |
| 5 | erex | ⊢ ( 𝑅 Er 𝐴 → ( 𝐴 ∈ V → 𝑅 ∈ V ) ) | |
| 6 | 4 5 | impbid | ⊢ ( 𝑅 Er 𝐴 → ( 𝑅 ∈ V ↔ 𝐴 ∈ V ) ) |