Metamath Proof Explorer


Theorem erexb

Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erexb ( 𝑅 Er 𝐴 → ( 𝑅 ∈ V ↔ 𝐴 ∈ V ) )

Proof

Step Hyp Ref Expression
1 dmexg ( 𝑅 ∈ V → dom 𝑅 ∈ V )
2 erdm ( 𝑅 Er 𝐴 → dom 𝑅 = 𝐴 )
3 2 eleq1d ( 𝑅 Er 𝐴 → ( dom 𝑅 ∈ V ↔ 𝐴 ∈ V ) )
4 1 3 syl5ib ( 𝑅 Er 𝐴 → ( 𝑅 ∈ V → 𝐴 ∈ V ) )
5 erex ( 𝑅 Er 𝐴 → ( 𝐴 ∈ V → 𝑅 ∈ V ) )
6 4 5 impbid ( 𝑅 Er 𝐴 → ( 𝑅 ∈ V ↔ 𝐴 ∈ V ) )