Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | erexb | ⊢ ( 𝑅 Er 𝐴 → ( 𝑅 ∈ V ↔ 𝐴 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg | ⊢ ( 𝑅 ∈ V → dom 𝑅 ∈ V ) | |
2 | erdm | ⊢ ( 𝑅 Er 𝐴 → dom 𝑅 = 𝐴 ) | |
3 | 2 | eleq1d | ⊢ ( 𝑅 Er 𝐴 → ( dom 𝑅 ∈ V ↔ 𝐴 ∈ V ) ) |
4 | 1 3 | syl5ib | ⊢ ( 𝑅 Er 𝐴 → ( 𝑅 ∈ V → 𝐴 ∈ V ) ) |
5 | erex | ⊢ ( 𝑅 Er 𝐴 → ( 𝐴 ∈ V → 𝑅 ∈ V ) ) | |
6 | 4 5 | impbid | ⊢ ( 𝑅 Er 𝐴 → ( 𝑅 ∈ V ↔ 𝐴 ∈ V ) ) |