Metamath Proof Explorer


Theorem erlbrd

Description: Deduce the ring localization equivalence relation. If for some T e. S we have T x. ( E x. H - F x. G ) = 0 , then pairs <. E , G >. and <. F , H >. are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses erlcl1.b 𝐵 = ( Base ‘ 𝑅 )
erlcl1.e = ( 𝑅 ~RL 𝑆 )
erlcl1.s ( 𝜑𝑆𝐵 )
erldi.1 0 = ( 0g𝑅 )
erldi.2 · = ( .r𝑅 )
erldi.3 = ( -g𝑅 )
erlbrd.u ( 𝜑𝑈 = ⟨ 𝐸 , 𝐺 ⟩ )
erlbrd.v ( 𝜑𝑉 = ⟨ 𝐹 , 𝐻 ⟩ )
erlbrd.e ( 𝜑𝐸𝐵 )
erlbrd.f ( 𝜑𝐹𝐵 )
erlbrd.g ( 𝜑𝐺𝑆 )
erlbrd.h ( 𝜑𝐻𝑆 )
erlbrd.1 ( 𝜑𝑇𝑆 )
erlbrd.2 ( 𝜑 → ( 𝑇 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = 0 )
Assertion erlbrd ( 𝜑𝑈 𝑉 )

Proof

Step Hyp Ref Expression
1 erlcl1.b 𝐵 = ( Base ‘ 𝑅 )
2 erlcl1.e = ( 𝑅 ~RL 𝑆 )
3 erlcl1.s ( 𝜑𝑆𝐵 )
4 erldi.1 0 = ( 0g𝑅 )
5 erldi.2 · = ( .r𝑅 )
6 erldi.3 = ( -g𝑅 )
7 erlbrd.u ( 𝜑𝑈 = ⟨ 𝐸 , 𝐺 ⟩ )
8 erlbrd.v ( 𝜑𝑉 = ⟨ 𝐹 , 𝐻 ⟩ )
9 erlbrd.e ( 𝜑𝐸𝐵 )
10 erlbrd.f ( 𝜑𝐹𝐵 )
11 erlbrd.g ( 𝜑𝐺𝑆 )
12 erlbrd.h ( 𝜑𝐻𝑆 )
13 erlbrd.1 ( 𝜑𝑇𝑆 )
14 erlbrd.2 ( 𝜑 → ( 𝑇 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = 0 )
15 9 11 opelxpd ( 𝜑 → ⟨ 𝐸 , 𝐺 ⟩ ∈ ( 𝐵 × 𝑆 ) )
16 7 15 eqeltrd ( 𝜑𝑈 ∈ ( 𝐵 × 𝑆 ) )
17 10 12 opelxpd ( 𝜑 → ⟨ 𝐹 , 𝐻 ⟩ ∈ ( 𝐵 × 𝑆 ) )
18 8 17 eqeltrd ( 𝜑𝑉 ∈ ( 𝐵 × 𝑆 ) )
19 16 18 jca ( 𝜑 → ( 𝑈 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑉 ∈ ( 𝐵 × 𝑆 ) ) )
20 simpr ( ( 𝜑𝑡 = 𝑇 ) → 𝑡 = 𝑇 )
21 20 oveq1d ( ( 𝜑𝑡 = 𝑇 ) → ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = ( 𝑇 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) )
22 21 eqeq1d ( ( 𝜑𝑡 = 𝑇 ) → ( ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = 0 ↔ ( 𝑇 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = 0 ) )
23 13 22 14 rspcedvd ( 𝜑 → ∃ 𝑡𝑆 ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = 0 )
24 19 23 jca ( 𝜑 → ( ( 𝑈 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑉 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = 0 ) )
25 eqid ( 𝐵 × 𝑆 ) = ( 𝐵 × 𝑆 )
26 eqid { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) }
27 1 4 5 6 25 26 3 erlval ( 𝜑 → ( 𝑅 ~RL 𝑆 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } )
28 2 27 eqtrid ( 𝜑 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } )
29 simprl ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → 𝑎 = 𝑈 )
30 29 fveq2d ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 1st𝑎 ) = ( 1st𝑈 ) )
31 7 fveq2d ( 𝜑 → ( 1st𝑈 ) = ( 1st ‘ ⟨ 𝐸 , 𝐺 ⟩ ) )
32 op1stg ( ( 𝐸𝐵𝐺𝑆 ) → ( 1st ‘ ⟨ 𝐸 , 𝐺 ⟩ ) = 𝐸 )
33 9 11 32 syl2anc ( 𝜑 → ( 1st ‘ ⟨ 𝐸 , 𝐺 ⟩ ) = 𝐸 )
34 31 33 eqtrd ( 𝜑 → ( 1st𝑈 ) = 𝐸 )
35 34 adantr ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 1st𝑈 ) = 𝐸 )
36 30 35 eqtrd ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 1st𝑎 ) = 𝐸 )
37 simprr ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → 𝑏 = 𝑉 )
38 37 fveq2d ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 2nd𝑏 ) = ( 2nd𝑉 ) )
39 8 fveq2d ( 𝜑 → ( 2nd𝑉 ) = ( 2nd ‘ ⟨ 𝐹 , 𝐻 ⟩ ) )
40 op2ndg ( ( 𝐹𝐵𝐻𝑆 ) → ( 2nd ‘ ⟨ 𝐹 , 𝐻 ⟩ ) = 𝐻 )
41 10 12 40 syl2anc ( 𝜑 → ( 2nd ‘ ⟨ 𝐹 , 𝐻 ⟩ ) = 𝐻 )
42 39 41 eqtrd ( 𝜑 → ( 2nd𝑉 ) = 𝐻 )
43 42 adantr ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 2nd𝑉 ) = 𝐻 )
44 38 43 eqtrd ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 2nd𝑏 ) = 𝐻 )
45 36 44 oveq12d ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) = ( 𝐸 · 𝐻 ) )
46 37 fveq2d ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 1st𝑏 ) = ( 1st𝑉 ) )
47 8 fveq2d ( 𝜑 → ( 1st𝑉 ) = ( 1st ‘ ⟨ 𝐹 , 𝐻 ⟩ ) )
48 op1stg ( ( 𝐹𝐵𝐻𝑆 ) → ( 1st ‘ ⟨ 𝐹 , 𝐻 ⟩ ) = 𝐹 )
49 10 12 48 syl2anc ( 𝜑 → ( 1st ‘ ⟨ 𝐹 , 𝐻 ⟩ ) = 𝐹 )
50 47 49 eqtrd ( 𝜑 → ( 1st𝑉 ) = 𝐹 )
51 50 adantr ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 1st𝑉 ) = 𝐹 )
52 46 51 eqtrd ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 1st𝑏 ) = 𝐹 )
53 29 fveq2d ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 2nd𝑎 ) = ( 2nd𝑈 ) )
54 7 fveq2d ( 𝜑 → ( 2nd𝑈 ) = ( 2nd ‘ ⟨ 𝐸 , 𝐺 ⟩ ) )
55 op2ndg ( ( 𝐸𝐵𝐺𝑆 ) → ( 2nd ‘ ⟨ 𝐸 , 𝐺 ⟩ ) = 𝐺 )
56 9 11 55 syl2anc ( 𝜑 → ( 2nd ‘ ⟨ 𝐸 , 𝐺 ⟩ ) = 𝐺 )
57 54 56 eqtrd ( 𝜑 → ( 2nd𝑈 ) = 𝐺 )
58 57 adantr ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 2nd𝑈 ) = 𝐺 )
59 53 58 eqtrd ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 2nd𝑎 ) = 𝐺 )
60 52 59 oveq12d ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) = ( 𝐹 · 𝐺 ) )
61 45 60 oveq12d ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) = ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) )
62 61 oveq2d ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) )
63 62 eqeq1d ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = 0 ) )
64 63 rexbidv ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = 0 ) )
65 28 64 brab2d ( 𝜑 → ( 𝑈 𝑉 ↔ ( ( 𝑈 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑉 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( 𝐹 · 𝐺 ) ) ) = 0 ) ) )
66 24 65 mpbird ( 𝜑𝑈 𝑉 )