Metamath Proof Explorer


Theorem erldi

Description: Main property of the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses erlcl1.b 𝐵 = ( Base ‘ 𝑅 )
erlcl1.e = ( 𝑅 ~RL 𝑆 )
erlcl1.s ( 𝜑𝑆𝐵 )
erldi.1 0 = ( 0g𝑅 )
erldi.2 · = ( .r𝑅 )
erldi.3 = ( -g𝑅 )
erldi.4 ( 𝜑𝑈 𝑉 )
Assertion erldi ( 𝜑 → ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) ) ) = 0 )

Proof

Step Hyp Ref Expression
1 erlcl1.b 𝐵 = ( Base ‘ 𝑅 )
2 erlcl1.e = ( 𝑅 ~RL 𝑆 )
3 erlcl1.s ( 𝜑𝑆𝐵 )
4 erldi.1 0 = ( 0g𝑅 )
5 erldi.2 · = ( .r𝑅 )
6 erldi.3 = ( -g𝑅 )
7 erldi.4 ( 𝜑𝑈 𝑉 )
8 eqid ( 𝐵 × 𝑆 ) = ( 𝐵 × 𝑆 )
9 eqid { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) }
10 1 4 5 6 8 9 3 erlval ( 𝜑 → ( 𝑅 ~RL 𝑆 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } )
11 2 10 eqtrid ( 𝜑 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑏 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } )
12 simpl ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → 𝑎 = 𝑈 )
13 12 fveq2d ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( 1st𝑎 ) = ( 1st𝑈 ) )
14 simpr ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → 𝑏 = 𝑉 )
15 14 fveq2d ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( 2nd𝑏 ) = ( 2nd𝑉 ) )
16 13 15 oveq12d ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) = ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) )
17 14 fveq2d ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( 1st𝑏 ) = ( 1st𝑉 ) )
18 12 fveq2d ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( 2nd𝑎 ) = ( 2nd𝑈 ) )
19 17 18 oveq12d ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) = ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) )
20 16 19 oveq12d ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) ) )
21 20 oveq2d ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = ( 𝑡 · ( ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) ) ) )
22 21 eqeq1d ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ( 𝑡 · ( ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) ) ) = 0 ) )
23 22 rexbidv ( ( 𝑎 = 𝑈𝑏 = 𝑉 ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) ) ) = 0 ) )
24 23 adantl ( ( 𝜑 ∧ ( 𝑎 = 𝑈𝑏 = 𝑉 ) ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) ) ) = 0 ) )
25 11 24 brab2d ( 𝜑 → ( 𝑈 𝑉 ↔ ( ( 𝑈 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑉 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) ) ) = 0 ) ) )
26 7 25 mpbid ( 𝜑 → ( ( 𝑈 ∈ ( 𝐵 × 𝑆 ) ∧ 𝑉 ∈ ( 𝐵 × 𝑆 ) ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) ) ) = 0 ) )
27 26 simprd ( 𝜑 → ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑈 ) · ( 2nd𝑉 ) ) ( ( 1st𝑉 ) · ( 2nd𝑈 ) ) ) ) = 0 )