Step |
Hyp |
Ref |
Expression |
1 |
|
ercpbl.r |
⊢ ( 𝜑 → ∼ Er 𝑉 ) |
2 |
|
ercpbl.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝑊 ) |
3 |
|
ercpbl.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) |
4 |
|
erlecpbl.e |
⊢ ( 𝜑 → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 𝑁 𝐵 ↔ 𝐶 𝑁 𝐷 ) ) ) |
5 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ∼ Er 𝑉 ) |
6 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑉 ∈ 𝑊 ) |
7 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) |
8 |
5 6 3 7
|
ercpbllem |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐴 ∼ 𝐶 ) ) |
9 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
10 |
5 6 3 9
|
ercpbllem |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ↔ 𝐵 ∼ 𝐷 ) ) |
11 |
8 10
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ) ↔ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) ) |
12 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 𝑁 𝐵 ↔ 𝐶 𝑁 𝐷 ) ) ) |
13 |
11 12
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ) → ( 𝐴 𝑁 𝐵 ↔ 𝐶 𝑁 𝐷 ) ) ) |