| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ercpbl.r | ⊢ ( 𝜑  →   ∼   Er  𝑉 ) | 
						
							| 2 |  | ercpbl.v | ⊢ ( 𝜑  →  𝑉  ∈  𝑊 ) | 
						
							| 3 |  | ercpbl.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  ) | 
						
							| 4 |  | erlecpbl.e | ⊢ ( 𝜑  →  ( ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 )  →  ( 𝐴 𝑁 𝐵  ↔  𝐶 𝑁 𝐷 ) ) ) | 
						
							| 5 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →   ∼   Er  𝑉 ) | 
						
							| 6 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  𝑉  ∈  𝑊 ) | 
						
							| 7 |  | simp2l | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 8 | 5 6 3 7 | ercpbllem | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐶 )  ↔  𝐴  ∼  𝐶 ) ) | 
						
							| 9 |  | simp2r | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 10 | 5 6 3 9 | ercpbllem | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐷 )  ↔  𝐵  ∼  𝐷 ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐶 )  ∧  ( 𝐹 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐷 ) )  ↔  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) ) ) | 
						
							| 12 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  ( ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 )  →  ( 𝐴 𝑁 𝐵  ↔  𝐶 𝑁 𝐷 ) ) ) | 
						
							| 13 | 11 12 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐶 )  ∧  ( 𝐹 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐷 ) )  →  ( 𝐴 𝑁 𝐵  ↔  𝐶 𝑁 𝐷 ) ) ) |