Metamath Proof Explorer


Theorem erler

Description: The relation used to build the ring localization is an equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses erler.1 𝐵 = ( Base ‘ 𝑅 )
erler.2 0 = ( 0g𝑅 )
erler.3 1 = ( 1r𝑅 )
erler.4 · = ( .r𝑅 )
erler.5 = ( -g𝑅 )
erler.w 𝑊 = ( 𝐵 × 𝑆 )
erler.q = ( 𝑅 ~RL 𝑆 )
erler.r ( 𝜑𝑅 ∈ CRing )
erler.s ( 𝜑𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
Assertion erler ( 𝜑 Er 𝑊 )

Proof

Step Hyp Ref Expression
1 erler.1 𝐵 = ( Base ‘ 𝑅 )
2 erler.2 0 = ( 0g𝑅 )
3 erler.3 1 = ( 1r𝑅 )
4 erler.4 · = ( .r𝑅 )
5 erler.5 = ( -g𝑅 )
6 erler.w 𝑊 = ( 𝐵 × 𝑆 )
7 erler.q = ( 𝑅 ~RL 𝑆 )
8 erler.r ( 𝜑𝑅 ∈ CRing )
9 erler.s ( 𝜑𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
10 eqid { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) }
11 10 relopabiv Rel { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) }
12 11 a1i ( 𝜑 → Rel { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } )
13 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
14 13 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
15 14 submss ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆𝐵 )
16 9 15 syl ( 𝜑𝑆𝐵 )
17 1 2 4 5 6 10 16 erlval ( 𝜑 → ( 𝑅 ~RL 𝑆 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } )
18 7 17 eqtrid ( 𝜑 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } )
19 18 releqd ( 𝜑 → ( Rel ↔ Rel { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } ) )
20 12 19 mpbird ( 𝜑 → Rel )
21 simpl ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → 𝑎 = 𝑥 )
22 21 fveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 1st𝑎 ) = ( 1st𝑥 ) )
23 simpr ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → 𝑏 = 𝑦 )
24 23 fveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 2nd𝑏 ) = ( 2nd𝑦 ) )
25 22 24 oveq12d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) = ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) )
26 23 fveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 1st𝑏 ) = ( 1st𝑦 ) )
27 21 fveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 2nd𝑎 ) = ( 2nd𝑥 ) )
28 26 27 oveq12d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) = ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) )
29 25 28 oveq12d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) )
30 29 oveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) )
31 30 eqeq1d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
32 31 rexbidv ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
33 32 adantl ( ( 𝜑 ∧ ( 𝑎 = 𝑥𝑏 = 𝑦 ) ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
34 18 33 brab2d ( 𝜑 → ( 𝑥 𝑦 ↔ ( ( 𝑥𝑊𝑦𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ) )
35 34 biimpa ( ( 𝜑𝑥 𝑦 ) → ( ( 𝑥𝑊𝑦𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
36 35 simplrd ( ( 𝜑𝑥 𝑦 ) → 𝑦𝑊 )
37 35 simplld ( ( 𝜑𝑥 𝑦 ) → 𝑥𝑊 )
38 36 37 jca ( ( 𝜑𝑥 𝑦 ) → ( 𝑦𝑊𝑥𝑊 ) )
39 35 simprd ( ( 𝜑𝑥 𝑦 ) → ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 )
40 8 crngringd ( 𝜑𝑅 ∈ Ring )
41 40 ringgrpd ( 𝜑𝑅 ∈ Grp )
42 41 ad3antrrr ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → 𝑅 ∈ Grp )
43 40 ad3antrrr ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → 𝑅 ∈ Ring )
44 37 ad2antrr ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → 𝑥𝑊 )
45 xp1st ( 𝑥 ∈ ( 𝐵 × 𝑆 ) → ( 1st𝑥 ) ∈ 𝐵 )
46 45 6 eleq2s ( 𝑥𝑊 → ( 1st𝑥 ) ∈ 𝐵 )
47 44 46 syl ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 1st𝑥 ) ∈ 𝐵 )
48 16 ad3antrrr ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → 𝑆𝐵 )
49 36 ad2antrr ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → 𝑦𝑊 )
50 xp2nd ( 𝑦 ∈ ( 𝐵 × 𝑆 ) → ( 2nd𝑦 ) ∈ 𝑆 )
51 50 6 eleq2s ( 𝑦𝑊 → ( 2nd𝑦 ) ∈ 𝑆 )
52 49 51 syl ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 2nd𝑦 ) ∈ 𝑆 )
53 48 52 sseldd ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 2nd𝑦 ) ∈ 𝐵 )
54 1 4 43 47 53 ringcld ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ∈ 𝐵 )
55 xp1st ( 𝑦 ∈ ( 𝐵 × 𝑆 ) → ( 1st𝑦 ) ∈ 𝐵 )
56 55 6 eleq2s ( 𝑦𝑊 → ( 1st𝑦 ) ∈ 𝐵 )
57 49 56 syl ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 1st𝑦 ) ∈ 𝐵 )
58 xp2nd ( 𝑥 ∈ ( 𝐵 × 𝑆 ) → ( 2nd𝑥 ) ∈ 𝑆 )
59 58 6 eleq2s ( 𝑥𝑊 → ( 2nd𝑥 ) ∈ 𝑆 )
60 44 59 syl ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 2nd𝑥 ) ∈ 𝑆 )
61 48 60 sseldd ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 2nd𝑥 ) ∈ 𝐵 )
62 1 4 43 57 61 ringcld ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ∈ 𝐵 )
63 eqid ( invg𝑅 ) = ( invg𝑅 )
64 1 5 63 grpinvsub ( ( 𝑅 ∈ Grp ∧ ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ∈ 𝐵 ∧ ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ∈ 𝐵 ) → ( ( invg𝑅 ) ‘ ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) )
65 42 54 62 64 syl3anc ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( ( invg𝑅 ) ‘ ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) )
66 65 oveq2d ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 𝑡 · ( ( invg𝑅 ) ‘ ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) = ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) )
67 simplr ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → 𝑡𝑆 )
68 48 67 sseldd ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → 𝑡𝐵 )
69 1 5 grpsubcl ( ( 𝑅 ∈ Grp ∧ ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ∈ 𝐵 ∧ ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ∈ 𝐵 ) → ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ∈ 𝐵 )
70 42 54 62 69 syl3anc ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ∈ 𝐵 )
71 1 4 63 43 68 70 ringmneg2 ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 𝑡 · ( ( invg𝑅 ) ‘ ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) = ( ( invg𝑅 ) ‘ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) )
72 simpr ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 )
73 72 fveq2d ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( ( invg𝑅 ) ‘ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) = ( ( invg𝑅 ) ‘ 0 ) )
74 2 63 grpinvid ( 𝑅 ∈ Grp → ( ( invg𝑅 ) ‘ 0 ) = 0 )
75 42 74 syl ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( ( invg𝑅 ) ‘ 0 ) = 0 )
76 71 73 75 3eqtrd ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 𝑡 · ( ( invg𝑅 ) ‘ ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) = 0 )
77 66 76 eqtr3d ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 )
78 77 ex ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑡𝑆 ) → ( ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 → ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
79 78 reximdva ( ( 𝜑𝑥 𝑦 ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 → ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
80 39 79 mpd ( ( 𝜑𝑥 𝑦 ) → ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 )
81 38 80 jca ( ( 𝜑𝑥 𝑦 ) → ( ( 𝑦𝑊𝑥𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
82 simpl ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → 𝑎 = 𝑦 )
83 82 fveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 1st𝑎 ) = ( 1st𝑦 ) )
84 simpr ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → 𝑏 = 𝑥 )
85 84 fveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 2nd𝑏 ) = ( 2nd𝑥 ) )
86 83 85 oveq12d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) = ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) )
87 84 fveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 1st𝑏 ) = ( 1st𝑥 ) )
88 82 fveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 2nd𝑎 ) = ( 2nd𝑦 ) )
89 87 88 oveq12d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) = ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) )
90 86 89 oveq12d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) )
91 90 oveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) )
92 91 eqeq1d ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
93 92 rexbidv ( ( 𝑎 = 𝑦𝑏 = 𝑥 ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
94 93 adantl ( ( 𝜑 ∧ ( 𝑎 = 𝑦𝑏 = 𝑥 ) ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
95 18 94 brab2d ( 𝜑 → ( 𝑦 𝑥 ↔ ( ( 𝑦𝑊𝑥𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 ) ) )
96 95 adantr ( ( 𝜑𝑥 𝑦 ) → ( 𝑦 𝑥 ↔ ( ( 𝑦𝑊𝑥𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ) = 0 ) ) )
97 81 96 mpbird ( ( 𝜑𝑥 𝑦 ) → 𝑦 𝑥 )
98 9 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
99 98 15 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑆𝐵 )
100 37 adantr ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) → 𝑥𝑊 )
101 100 ad4antr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑥𝑊 )
102 101 6 eleqtrdi ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑥 ∈ ( 𝐵 × 𝑆 ) )
103 1st2nd2 ( 𝑥 ∈ ( 𝐵 × 𝑆 ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
104 102 103 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
105 simpl ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → 𝑎 = 𝑦 )
106 105 fveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( 1st𝑎 ) = ( 1st𝑦 ) )
107 simpr ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → 𝑏 = 𝑧 )
108 107 fveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( 2nd𝑏 ) = ( 2nd𝑧 ) )
109 106 108 oveq12d ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) = ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) )
110 107 fveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( 1st𝑏 ) = ( 1st𝑧 ) )
111 105 fveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( 2nd𝑎 ) = ( 2nd𝑦 ) )
112 110 111 oveq12d ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) = ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) )
113 109 112 oveq12d ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) )
114 113 oveq2d ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) )
115 114 eqeq1d ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
116 115 rexbidv ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
117 oveq1 ( 𝑡 = 𝑢 → ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) )
118 117 eqeq1d ( 𝑡 = 𝑢 → ( ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ↔ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
119 118 cbvrexvw ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ↔ ∃ 𝑢𝑆 ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 )
120 116 119 bitrdi ( ( 𝑎 = 𝑦𝑏 = 𝑧 ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑢𝑆 ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
121 120 adantl ( ( 𝜑 ∧ ( 𝑎 = 𝑦𝑏 = 𝑧 ) ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑢𝑆 ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
122 18 121 brab2d ( 𝜑 → ( 𝑦 𝑧 ↔ ( ( 𝑦𝑊𝑧𝑊 ) ∧ ∃ 𝑢𝑆 ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) ) )
123 122 biimpa ( ( 𝜑𝑦 𝑧 ) → ( ( 𝑦𝑊𝑧𝑊 ) ∧ ∃ 𝑢𝑆 ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
124 123 adantlr ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) → ( ( 𝑦𝑊𝑧𝑊 ) ∧ ∃ 𝑢𝑆 ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) )
125 124 simplrd ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) → 𝑧𝑊 )
126 125 ad4antr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑧𝑊 )
127 126 6 eleqtrdi ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑧 ∈ ( 𝐵 × 𝑆 ) )
128 1st2nd2 ( 𝑧 ∈ ( 𝐵 × 𝑆 ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
129 127 128 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
130 101 46 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 1st𝑥 ) ∈ 𝐵 )
131 xp1st ( 𝑧 ∈ ( 𝐵 × 𝑆 ) → ( 1st𝑧 ) ∈ 𝐵 )
132 131 6 eleq2s ( 𝑧𝑊 → ( 1st𝑧 ) ∈ 𝐵 )
133 126 132 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 1st𝑧 ) ∈ 𝐵 )
134 101 59 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 2nd𝑥 ) ∈ 𝑆 )
135 xp2nd ( 𝑧 ∈ ( 𝐵 × 𝑆 ) → ( 2nd𝑧 ) ∈ 𝑆 )
136 135 6 eleq2s ( 𝑧𝑊 → ( 2nd𝑧 ) ∈ 𝑆 )
137 126 136 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 2nd𝑧 ) ∈ 𝑆 )
138 simp-4r ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑡𝑆 )
139 simplr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑢𝑆 )
140 13 4 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
141 140 submcl ( ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ∧ 𝑡𝑆𝑢𝑆 ) → ( 𝑡 · 𝑢 ) ∈ 𝑆 )
142 98 138 139 141 syl3anc ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 𝑡 · 𝑢 ) ∈ 𝑆 )
143 36 ad5antr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑦𝑊 )
144 143 51 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 2nd𝑦 ) ∈ 𝑆 )
145 140 submcl ( ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ∧ ( 𝑡 · 𝑢 ) ∈ 𝑆 ∧ ( 2nd𝑦 ) ∈ 𝑆 ) → ( ( 𝑡 · 𝑢 ) · ( 2nd𝑦 ) ) ∈ 𝑆 )
146 98 142 144 145 syl3anc ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑡 · 𝑢 ) · ( 2nd𝑦 ) ) ∈ 𝑆 )
147 40 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑅 ∈ Ring )
148 99 144 sseldd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 2nd𝑦 ) ∈ 𝐵 )
149 99 137 sseldd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 2nd𝑧 ) ∈ 𝐵 )
150 1 4 147 130 149 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ∈ 𝐵 )
151 99 134 sseldd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 2nd𝑥 ) ∈ 𝐵 )
152 1 4 147 133 151 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ∈ 𝐵 )
153 1 4 5 147 148 150 152 ringsubdi ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑦 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ) = ( ( ( 2nd𝑦 ) · ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ) ( ( 2nd𝑦 ) · ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ) )
154 8 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑅 ∈ CRing )
155 1 4 154 148 130 149 crng12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑦 ) · ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ) = ( ( 1st𝑥 ) · ( ( 2nd𝑦 ) · ( 2nd𝑧 ) ) ) )
156 1 4 154 148 149 crngcomd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑦 ) · ( 2nd𝑧 ) ) = ( ( 2nd𝑧 ) · ( 2nd𝑦 ) ) )
157 156 oveq2d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑥 ) · ( ( 2nd𝑦 ) · ( 2nd𝑧 ) ) ) = ( ( 1st𝑥 ) · ( ( 2nd𝑧 ) · ( 2nd𝑦 ) ) ) )
158 1 4 154 130 149 148 crng12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑥 ) · ( ( 2nd𝑧 ) · ( 2nd𝑦 ) ) ) = ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) )
159 155 157 158 3eqtrd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑦 ) · ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ) = ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) )
160 1 4 154 148 133 151 crng12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑦 ) · ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) = ( ( 1st𝑧 ) · ( ( 2nd𝑦 ) · ( 2nd𝑥 ) ) ) )
161 1 4 154 148 151 crngcomd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑦 ) · ( 2nd𝑥 ) ) = ( ( 2nd𝑥 ) · ( 2nd𝑦 ) ) )
162 161 oveq2d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑧 ) · ( ( 2nd𝑦 ) · ( 2nd𝑥 ) ) ) = ( ( 1st𝑧 ) · ( ( 2nd𝑥 ) · ( 2nd𝑦 ) ) ) )
163 1 4 154 133 151 148 crng12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑧 ) · ( ( 2nd𝑥 ) · ( 2nd𝑦 ) ) ) = ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) )
164 160 162 163 3eqtrd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑦 ) · ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) = ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) )
165 159 164 oveq12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 2nd𝑦 ) · ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ) ( ( 2nd𝑦 ) · ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ) = ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) )
166 1 4 147 130 148 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ∈ 𝐵 )
167 143 56 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 1st𝑦 ) ∈ 𝐵 )
168 1 4 147 167 151 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ∈ 𝐵 )
169 1 4 5 147 149 166 168 ringsubdi ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 2nd𝑧 ) · ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) )
170 1 4 147 167 149 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ∈ 𝐵 )
171 1 4 147 133 148 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ∈ 𝐵 )
172 1 4 5 147 151 170 171 ringsubdi ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = ( ( ( 2nd𝑥 ) · ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) )
173 169 172 oveq12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) = ( ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 2nd𝑧 ) · ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( ( 2nd𝑥 ) · ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) )
174 1 4 154 167 149 151 crng12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) = ( ( 2nd𝑧 ) · ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) )
175 174 oveq2d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ) = ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 2nd𝑧 ) · ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) )
176 1 4 154 149 151 crngcomd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) = ( ( 2nd𝑥 ) · ( 2nd𝑧 ) ) )
177 176 oveq2d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) = ( ( 1st𝑦 ) · ( ( 2nd𝑥 ) · ( 2nd𝑧 ) ) ) )
178 1 4 154 151 167 149 crng12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑥 ) · ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ) = ( ( 1st𝑦 ) · ( ( 2nd𝑥 ) · ( 2nd𝑧 ) ) ) )
179 177 178 eqtr4d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) = ( ( 2nd𝑥 ) · ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ) )
180 179 oveq1d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = ( ( ( 2nd𝑥 ) · ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) )
181 175 180 oveq12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) = ( ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 2nd𝑧 ) · ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( ( 2nd𝑥 ) · ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) )
182 41 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑅 ∈ Grp )
183 1 4 147 149 166 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ∈ 𝐵 )
184 1 4 147 149 151 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ∈ 𝐵 )
185 1 4 147 167 184 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ∈ 𝐵 )
186 1 4 147 151 171 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ∈ 𝐵 )
187 eqid ( +g𝑅 ) = ( +g𝑅 )
188 1 187 5 grpnpncan ( ( 𝑅 ∈ Grp ∧ ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ∈ 𝐵 ∧ ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ∈ 𝐵 ∧ ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ∈ 𝐵 ) ) → ( ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) = ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) )
189 182 183 185 186 188 syl13anc ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( ( 1st𝑦 ) · ( ( 2nd𝑧 ) · ( 2nd𝑥 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) = ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) )
190 173 181 189 3eqtr2rd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 2nd𝑧 ) · ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ) ( ( 2nd𝑥 ) · ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = ( ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) )
191 153 165 190 3eqtrd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑦 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ) = ( ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) )
192 191 oveq2d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑦 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ) ) = ( ( 𝑡 · 𝑢 ) · ( ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) )
193 99 142 sseldd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 𝑡 · 𝑢 ) ∈ 𝐵 )
194 1 5 grpsubcl ( ( 𝑅 ∈ Grp ∧ ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ∈ 𝐵 ∧ ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ∈ 𝐵 ) → ( ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ∈ 𝐵 )
195 182 150 152 194 syl3anc ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ∈ 𝐵 )
196 1 4 147 193 148 195 ringassd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑡 · 𝑢 ) · ( 2nd𝑦 ) ) · ( ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ) = ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑦 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ) ) )
197 99 139 sseldd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑢𝐵 )
198 99 138 sseldd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑡𝐵 )
199 1 4 154 197 149 198 cringmul32d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑢 · ( 2nd𝑧 ) ) · 𝑡 ) = ( ( 𝑢 · 𝑡 ) · ( 2nd𝑧 ) ) )
200 1 4 154 197 198 crngcomd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 𝑢 · 𝑡 ) = ( 𝑡 · 𝑢 ) )
201 200 oveq1d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑢 · 𝑡 ) · ( 2nd𝑧 ) ) = ( ( 𝑡 · 𝑢 ) · ( 2nd𝑧 ) ) )
202 199 201 eqtrd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑢 · ( 2nd𝑧 ) ) · 𝑡 ) = ( ( 𝑡 · 𝑢 ) · ( 2nd𝑧 ) ) )
203 202 oveq1d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑢 · ( 2nd𝑧 ) ) · 𝑡 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = ( ( ( 𝑡 · 𝑢 ) · ( 2nd𝑧 ) ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) )
204 1 4 147 197 149 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 𝑢 · ( 2nd𝑧 ) ) ∈ 𝐵 )
205 182 166 168 69 syl3anc ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ∈ 𝐵 )
206 1 4 147 204 198 205 ringassd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑢 · ( 2nd𝑧 ) ) · 𝑡 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = ( ( 𝑢 · ( 2nd𝑧 ) ) · ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) )
207 1 4 147 193 149 205 ringassd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑡 · 𝑢 ) · ( 2nd𝑧 ) ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) )
208 203 206 207 3eqtr3d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑢 · ( 2nd𝑧 ) ) · ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) = ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) )
209 1 4 154 198 151 197 cringmul32d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑡 · ( 2nd𝑥 ) ) · 𝑢 ) = ( ( 𝑡 · 𝑢 ) · ( 2nd𝑥 ) ) )
210 209 oveq1d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑡 · ( 2nd𝑥 ) ) · 𝑢 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = ( ( ( 𝑡 · 𝑢 ) · ( 2nd𝑥 ) ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) )
211 1 4 147 198 151 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 𝑡 · ( 2nd𝑥 ) ) ∈ 𝐵 )
212 1 5 grpsubcl ( ( 𝑅 ∈ Grp ∧ ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ∈ 𝐵 ∧ ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ∈ 𝐵 ) → ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ∈ 𝐵 )
213 182 170 171 212 syl3anc ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ∈ 𝐵 )
214 1 4 147 211 197 213 ringassd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑡 · ( 2nd𝑥 ) ) · 𝑢 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = ( ( 𝑡 · ( 2nd𝑥 ) ) · ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) )
215 1 4 147 193 151 213 ringassd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑡 · 𝑢 ) · ( 2nd𝑥 ) ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) )
216 210 214 215 3eqtr3d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑡 · ( 2nd𝑥 ) ) · ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) = ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) )
217 208 216 oveq12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑢 · ( 2nd𝑧 ) ) · ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) ( +g𝑅 ) ( ( 𝑡 · ( 2nd𝑥 ) ) · ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) = ( ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) ( +g𝑅 ) ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) )
218 1 4 147 149 205 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ∈ 𝐵 )
219 1 4 147 151 213 ringcld ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ∈ 𝐵 )
220 1 187 4 ringdi ( ( 𝑅 ∈ Ring ∧ ( ( 𝑡 · 𝑢 ) ∈ 𝐵 ∧ ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ∈ 𝐵 ∧ ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ∈ 𝐵 ) ) → ( ( 𝑡 · 𝑢 ) · ( ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) = ( ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) ( +g𝑅 ) ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) )
221 147 193 218 219 220 syl13anc ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑡 · 𝑢 ) · ( ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) = ( ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) ( +g𝑅 ) ( ( 𝑡 · 𝑢 ) · ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) )
222 217 221 eqtr4d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑢 · ( 2nd𝑧 ) ) · ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) ( +g𝑅 ) ( ( 𝑡 · ( 2nd𝑥 ) ) · ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) = ( ( 𝑡 · 𝑢 ) · ( ( ( 2nd𝑧 ) · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ( +g𝑅 ) ( ( 2nd𝑥 ) · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) )
223 192 196 222 3eqtr4d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑡 · 𝑢 ) · ( 2nd𝑦 ) ) · ( ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ) = ( ( ( 𝑢 · ( 2nd𝑧 ) ) · ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) ( +g𝑅 ) ( ( 𝑡 · ( 2nd𝑥 ) ) · ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) )
224 simpllr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 )
225 224 oveq2d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑢 · ( 2nd𝑧 ) ) · ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) = ( ( 𝑢 · ( 2nd𝑧 ) ) · 0 ) )
226 1 4 2 147 204 ringrzd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑢 · ( 2nd𝑧 ) ) · 0 ) = 0 )
227 225 226 eqtrd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑢 · ( 2nd𝑧 ) ) · ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) = 0 )
228 simpr ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 )
229 228 oveq2d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑡 · ( 2nd𝑥 ) ) · ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) = ( ( 𝑡 · ( 2nd𝑥 ) ) · 0 ) )
230 1 4 2 147 211 ringrzd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑡 · ( 2nd𝑥 ) ) · 0 ) = 0 )
231 229 230 eqtrd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( 𝑡 · ( 2nd𝑥 ) ) · ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) = 0 )
232 227 231 oveq12d ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑢 · ( 2nd𝑧 ) ) · ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) ) ( +g𝑅 ) ( ( 𝑡 · ( 2nd𝑥 ) ) · ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) ) ) = ( 0 ( +g𝑅 ) 0 ) )
233 1 2 grpidcl ( 𝑅 ∈ Grp → 0𝐵 )
234 182 233 syl ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 0𝐵 )
235 1 187 2 182 234 grplidd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( 0 ( +g𝑅 ) 0 ) = 0 )
236 223 232 235 3eqtrd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → ( ( ( 𝑡 · 𝑢 ) · ( 2nd𝑦 ) ) · ( ( ( 1st𝑥 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑥 ) ) ) ) = 0 )
237 1 7 99 2 4 5 104 129 130 133 134 137 146 236 erlbrd ( ( ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ∧ 𝑢𝑆 ) ∧ ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 ) → 𝑥 𝑧 )
238 124 simprd ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) → ∃ 𝑢𝑆 ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 )
239 238 ad2antrr ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → ∃ 𝑢𝑆 ( 𝑢 · ( ( ( 1st𝑦 ) · ( 2nd𝑧 ) ) ( ( 1st𝑧 ) · ( 2nd𝑦 ) ) ) ) = 0 )
240 237 239 r19.29a ( ( ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) ∧ 𝑡𝑆 ) ∧ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 ) → 𝑥 𝑧 )
241 39 adantr ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) → ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑦 ) ) ( ( 1st𝑦 ) · ( 2nd𝑥 ) ) ) ) = 0 )
242 240 241 r19.29a ( ( ( 𝜑𝑥 𝑦 ) ∧ 𝑦 𝑧 ) → 𝑥 𝑧 )
243 242 anasss ( ( 𝜑 ∧ ( 𝑥 𝑦𝑦 𝑧 ) ) → 𝑥 𝑧 )
244 13 3 ringidval 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
245 244 subm0cl ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 1𝑆 )
246 9 245 syl ( 𝜑1𝑆 )
247 246 adantr ( ( 𝜑𝑥𝑊 ) → 1𝑆 )
248 oveq1 ( 𝑡 = 1 → ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = ( 1 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) )
249 248 eqeq1d ( 𝑡 = 1 → ( ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ↔ ( 1 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
250 249 adantl ( ( ( 𝜑𝑥𝑊 ) ∧ 𝑡 = 1 ) → ( ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ↔ ( 1 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
251 40 adantr ( ( 𝜑𝑥𝑊 ) → 𝑅 ∈ Ring )
252 46 adantl ( ( 𝜑𝑥𝑊 ) → ( 1st𝑥 ) ∈ 𝐵 )
253 16 adantr ( ( 𝜑𝑥𝑊 ) → 𝑆𝐵 )
254 59 adantl ( ( 𝜑𝑥𝑊 ) → ( 2nd𝑥 ) ∈ 𝑆 )
255 253 254 sseldd ( ( 𝜑𝑥𝑊 ) → ( 2nd𝑥 ) ∈ 𝐵 )
256 1 4 251 252 255 ringcld ( ( 𝜑𝑥𝑊 ) → ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ∈ 𝐵 )
257 1 2 5 grpsubid ( ( 𝑅 ∈ Grp ∧ ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ∈ 𝐵 ) → ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) = 0 )
258 41 256 257 syl2an2r ( ( 𝜑𝑥𝑊 ) → ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) = 0 )
259 258 oveq2d ( ( 𝜑𝑥𝑊 ) → ( 1 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = ( 1 · 0 ) )
260 41 233 syl ( 𝜑0𝐵 )
261 1 4 3 40 260 ringlidmd ( 𝜑 → ( 1 · 0 ) = 0 )
262 261 adantr ( ( 𝜑𝑥𝑊 ) → ( 1 · 0 ) = 0 )
263 259 262 eqtrd ( ( 𝜑𝑥𝑊 ) → ( 1 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 )
264 247 250 263 rspcedvd ( ( 𝜑𝑥𝑊 ) → ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 )
265 264 ex ( 𝜑 → ( 𝑥𝑊 → ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
266 265 pm4.71d ( 𝜑 → ( 𝑥𝑊 ↔ ( 𝑥𝑊 ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ) )
267 pm4.24 ( 𝑥𝑊 ↔ ( 𝑥𝑊𝑥𝑊 ) )
268 267 anbi1i ( ( 𝑥𝑊 ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ↔ ( ( 𝑥𝑊𝑥𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
269 266 268 bitrdi ( 𝜑 → ( 𝑥𝑊 ↔ ( ( 𝑥𝑊𝑥𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ) )
270 simpl ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → 𝑎 = 𝑥 )
271 270 fveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( 1st𝑎 ) = ( 1st𝑥 ) )
272 simpr ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → 𝑏 = 𝑥 )
273 272 fveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( 2nd𝑏 ) = ( 2nd𝑥 ) )
274 271 273 oveq12d ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) = ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) )
275 272 fveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( 1st𝑏 ) = ( 1st𝑥 ) )
276 270 fveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( 2nd𝑎 ) = ( 2nd𝑥 ) )
277 275 276 oveq12d ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) = ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) )
278 274 277 oveq12d ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) )
279 278 oveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) )
280 279 eqeq1d ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
281 280 rexbidv ( ( 𝑎 = 𝑥𝑏 = 𝑥 ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
282 281 adantl ( ( 𝜑 ∧ ( 𝑎 = 𝑥𝑏 = 𝑥 ) ) → ( ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) )
283 18 282 brab2d ( 𝜑 → ( 𝑥 𝑥 ↔ ( ( 𝑥𝑊𝑥𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ( ( 1st𝑥 ) · ( 2nd𝑥 ) ) ) ) = 0 ) ) )
284 269 283 bitr4d ( 𝜑 → ( 𝑥𝑊𝑥 𝑥 ) )
285 20 97 243 284 iserd ( 𝜑 Er 𝑊 )