Metamath Proof Explorer


Theorem erlval

Description: Value of the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rlocval.1 𝐵 = ( Base ‘ 𝑅 )
rlocval.2 0 = ( 0g𝑅 )
rlocval.3 · = ( .r𝑅 )
rlocval.4 = ( -g𝑅 )
erlval.w 𝑊 = ( 𝐵 × 𝑆 )
erlval.q = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) }
erlval.20 ( 𝜑𝑆𝐵 )
Assertion erlval ( 𝜑 → ( 𝑅 ~RL 𝑆 ) = )

Proof

Step Hyp Ref Expression
1 rlocval.1 𝐵 = ( Base ‘ 𝑅 )
2 rlocval.2 0 = ( 0g𝑅 )
3 rlocval.3 · = ( .r𝑅 )
4 rlocval.4 = ( -g𝑅 )
5 erlval.w 𝑊 = ( 𝐵 × 𝑆 )
6 erlval.q = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) }
7 erlval.20 ( 𝜑𝑆𝐵 )
8 simpr ( ( 𝜑𝑅 ∈ V ) → 𝑅 ∈ V )
9 1 fvexi 𝐵 ∈ V
10 9 a1i ( ( 𝜑𝑅 ∈ V ) → 𝐵 ∈ V )
11 7 adantr ( ( 𝜑𝑅 ∈ V ) → 𝑆𝐵 )
12 10 11 ssexd ( ( 𝜑𝑅 ∈ V ) → 𝑆 ∈ V )
13 10 12 xpexd ( ( 𝜑𝑅 ∈ V ) → ( 𝐵 × 𝑆 ) ∈ V )
14 5 13 eqeltrid ( ( 𝜑𝑅 ∈ V ) → 𝑊 ∈ V )
15 14 14 xpexd ( ( 𝜑𝑅 ∈ V ) → ( 𝑊 × 𝑊 ) ∈ V )
16 simprll ( ( 𝜑 ∧ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) ) → 𝑎𝑊 )
17 simprlr ( ( 𝜑 ∧ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) ) → 𝑏𝑊 )
18 16 17 opabssxpd ( 𝜑 → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } ⊆ ( 𝑊 × 𝑊 ) )
19 18 adantr ( ( 𝜑𝑅 ∈ V ) → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } ⊆ ( 𝑊 × 𝑊 ) )
20 15 19 ssexd ( ( 𝜑𝑅 ∈ V ) → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } ∈ V )
21 6 20 eqeltrid ( ( 𝜑𝑅 ∈ V ) → ∈ V )
22 fvexd ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( .r𝑟 ) ∈ V )
23 fveq2 ( 𝑟 = 𝑅 → ( .r𝑟 ) = ( .r𝑅 ) )
24 23 adantr ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( .r𝑟 ) = ( .r𝑅 ) )
25 24 3 eqtr4di ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( .r𝑟 ) = · )
26 fvexd ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( Base ‘ 𝑟 ) ∈ V )
27 vex 𝑠 ∈ V
28 27 a1i ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → 𝑠 ∈ V )
29 26 28 xpexd ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) ∈ V )
30 fveq2 ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
31 30 ad2antrr ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
32 31 1 eqtr4di ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( Base ‘ 𝑟 ) = 𝐵 )
33 simplr ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → 𝑠 = 𝑆 )
34 32 33 xpeq12d ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) = ( 𝐵 × 𝑆 ) )
35 34 5 eqtr4di ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) = 𝑊 )
36 simpr ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑤 = 𝑊 )
37 36 eleq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑎𝑤𝑎𝑊 ) )
38 36 eleq2d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑏𝑤𝑏𝑊 ) )
39 37 38 anbi12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 𝑎𝑤𝑏𝑤 ) ↔ ( 𝑎𝑊𝑏𝑊 ) ) )
40 33 adantr ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑠 = 𝑆 )
41 simplr ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑥 = · )
42 eqidd ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → 𝑡 = 𝑡 )
43 fveq2 ( 𝑟 = 𝑅 → ( -g𝑟 ) = ( -g𝑅 ) )
44 43 ad3antrrr ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( -g𝑟 ) = ( -g𝑅 ) )
45 44 4 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( -g𝑟 ) = )
46 41 oveqd ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) = ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) )
47 41 oveqd ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) = ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) )
48 45 46 47 oveq123d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) = ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) )
49 41 42 48 oveq123d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) )
50 fveq2 ( 𝑟 = 𝑅 → ( 0g𝑟 ) = ( 0g𝑅 ) )
51 50 ad3antrrr ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 0g𝑟 ) = ( 0g𝑅 ) )
52 51 2 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( 0g𝑟 ) = 0 )
53 49 52 eqeq12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ↔ ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) )
54 40 53 rexeqbidv ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ↔ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) )
55 39 54 anbi12d ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → ( ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) ↔ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) ) )
56 55 opabbidv ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑊𝑏𝑊 ) ∧ ∃ 𝑡𝑆 ( 𝑡 · ( ( ( 1st𝑎 ) · ( 2nd𝑏 ) ) ( ( 1st𝑏 ) · ( 2nd𝑎 ) ) ) ) = 0 ) } )
57 56 6 eqtr4di ( ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) ∧ 𝑤 = 𝑊 ) → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) } = )
58 29 35 57 csbied2 ( ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) ∧ 𝑥 = · ) → ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) } = )
59 22 25 58 csbied2 ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) } = )
60 df-erl ~RL = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( .r𝑟 ) / 𝑥 ( ( Base ‘ 𝑟 ) × 𝑠 ) / 𝑤 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎𝑤𝑏𝑤 ) ∧ ∃ 𝑡𝑠 ( 𝑡 𝑥 ( ( ( 1st𝑎 ) 𝑥 ( 2nd𝑏 ) ) ( -g𝑟 ) ( ( 1st𝑏 ) 𝑥 ( 2nd𝑎 ) ) ) ) = ( 0g𝑟 ) ) } )
61 59 60 ovmpoga ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ∧ ∈ V ) → ( 𝑅 ~RL 𝑆 ) = )
62 8 12 21 61 syl3anc ( ( 𝜑𝑅 ∈ V ) → ( 𝑅 ~RL 𝑆 ) = )
63 60 reldmmpo Rel dom ~RL
64 63 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅 ~RL 𝑆 ) = ∅ )
65 64 adantl ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝑅 ~RL 𝑆 ) = ∅ )
66 6 18 eqsstrid ( 𝜑 ⊆ ( 𝑊 × 𝑊 ) )
67 66 adantr ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ⊆ ( 𝑊 × 𝑊 ) )
68 fvprc ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ )
69 1 68 eqtrid ( ¬ 𝑅 ∈ V → 𝐵 = ∅ )
70 69 xpeq1d ( ¬ 𝑅 ∈ V → ( 𝐵 × 𝑆 ) = ( ∅ × 𝑆 ) )
71 0xp ( ∅ × 𝑆 ) = ∅
72 70 71 eqtrdi ( ¬ 𝑅 ∈ V → ( 𝐵 × 𝑆 ) = ∅ )
73 5 72 eqtrid ( ¬ 𝑅 ∈ V → 𝑊 = ∅ )
74 id ( 𝑊 = ∅ → 𝑊 = ∅ )
75 74 74 xpeq12d ( 𝑊 = ∅ → ( 𝑊 × 𝑊 ) = ( ∅ × ∅ ) )
76 0xp ( ∅ × ∅ ) = ∅
77 75 76 eqtrdi ( 𝑊 = ∅ → ( 𝑊 × 𝑊 ) = ∅ )
78 73 77 syl ( ¬ 𝑅 ∈ V → ( 𝑊 × 𝑊 ) = ∅ )
79 78 adantl ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝑊 × 𝑊 ) = ∅ )
80 67 79 sseqtrd ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ⊆ ∅ )
81 ss0 ( ⊆ ∅ → = ∅ )
82 80 81 syl ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → = ∅ )
83 65 82 eqtr4d ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝑅 ~RL 𝑆 ) = )
84 62 83 pm2.61dan ( 𝜑 → ( 𝑅 ~RL 𝑆 ) = )