| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eropr.1 |
⊢ 𝐽 = ( 𝐴 / 𝑅 ) |
| 2 |
|
eropr.2 |
⊢ 𝐾 = ( 𝐵 / 𝑆 ) |
| 3 |
|
eropr.3 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) |
| 4 |
|
eropr.4 |
⊢ ( 𝜑 → 𝑅 Er 𝑈 ) |
| 5 |
|
eropr.5 |
⊢ ( 𝜑 → 𝑆 Er 𝑉 ) |
| 6 |
|
eropr.6 |
⊢ ( 𝜑 → 𝑇 Er 𝑊 ) |
| 7 |
|
eropr.7 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 8 |
|
eropr.8 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) |
| 9 |
|
eropr.9 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) |
| 10 |
|
eropr.10 |
⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
| 11 |
|
eropr.11 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) |
| 12 |
|
eropr.12 |
⊢ ⨣ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } |
| 13 |
|
eropr.13 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) |
| 14 |
|
eropr.14 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) |
| 15 |
|
eropr.15 |
⊢ 𝐿 = ( 𝐶 / 𝑇 ) |
| 16 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵 ) ) → 𝑇 ∈ 𝑍 ) |
| 17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
| 18 |
17
|
fovcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 + 𝑞 ) ∈ 𝐶 ) |
| 19 |
|
ecelqsg |
⊢ ( ( 𝑇 ∈ 𝑍 ∧ ( 𝑝 + 𝑞 ) ∈ 𝐶 ) → [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ ( 𝐶 / 𝑇 ) ) |
| 20 |
16 18 19
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵 ) ) → [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ ( 𝐶 / 𝑇 ) ) |
| 21 |
20 15
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵 ) ) → [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ 𝐿 ) |
| 22 |
|
eleq1a |
⊢ ( [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ 𝐿 → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 → 𝑧 ∈ 𝐿 ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 → 𝑧 ∈ 𝐿 ) ) |
| 24 |
23
|
adantld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐵 ) ) → ( ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → 𝑧 ∈ 𝐿 ) ) |
| 25 |
24
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → 𝑧 ∈ 𝐿 ) ) |
| 26 |
25
|
abssdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → { 𝑧 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } ⊆ 𝐿 ) |
| 27 |
1 2 3 4 5 6 7 8 9 10 11
|
eroveu |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 28 |
|
iotacl |
⊢ ( ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } ) |
| 30 |
26 29
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ∈ 𝐿 ) |
| 31 |
30
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐾 ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ∈ 𝐿 ) |
| 32 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 33 |
32
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐾 ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ∈ 𝐿 ↔ ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) : ( 𝐽 × 𝐾 ) ⟶ 𝐿 ) |
| 34 |
31 33
|
sylib |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) : ( 𝐽 × 𝐾 ) ⟶ 𝐿 ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12
|
erovlem |
⊢ ( 𝜑 → ⨣ = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |
| 36 |
35
|
feq1d |
⊢ ( 𝜑 → ( ⨣ : ( 𝐽 × 𝐾 ) ⟶ 𝐿 ↔ ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) : ( 𝐽 × 𝐾 ) ⟶ 𝐿 ) ) |
| 37 |
34 36
|
mpbird |
⊢ ( 𝜑 → ⨣ : ( 𝐽 × 𝐾 ) ⟶ 𝐿 ) |