Step |
Hyp |
Ref |
Expression |
1 |
|
eropr.1 |
âĒ ð― = ( ðī / ð
) |
2 |
|
eropr.2 |
âĒ ðū = ( ðĩ / ð ) |
3 |
|
eropr.3 |
âĒ ( ð â ð â ð ) |
4 |
|
eropr.4 |
âĒ ( ð â ð
Er ð ) |
5 |
|
eropr.5 |
âĒ ( ð â ð Er ð ) |
6 |
|
eropr.6 |
âĒ ( ð â ð Er ð ) |
7 |
|
eropr.7 |
âĒ ( ð â ðī â ð ) |
8 |
|
eropr.8 |
âĒ ( ð â ðĩ â ð ) |
9 |
|
eropr.9 |
âĒ ( ð â ðķ â ð ) |
10 |
|
eropr.10 |
âĒ ( ð â + : ( ðī à ðĩ ) âķ ðķ ) |
11 |
|
eropr.11 |
âĒ ( ( ð â§ ( ( ð â ðī â§ ð â ðī ) â§ ( ðĄ â ðĩ â§ ðĒ â ðĩ ) ) ) â ( ( ð ð
ð â§ ðĄ ð ðĒ ) â ( ð + ðĄ ) ð ( ð + ðĒ ) ) ) |
12 |
|
eropr.12 |
âĒ âĻĢ = { âĻ âĻ ðĨ , ðĶ âĐ , ð§ âĐ âĢ â ð â ðī â ð â ðĩ ( ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) } |
13 |
|
eropr.13 |
âĒ ( ð â ð
â ð ) |
14 |
|
eropr.14 |
âĒ ( ð â ð â ð ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
erovlem |
âĒ ( ð â âĻĢ = ( ðĨ â ð― , ðĶ â ðū âĶ ( âĐ ð§ â ð â ðī â ð â ðĩ ( ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) ) ) |
16 |
15
|
3ad2ant1 |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â âĻĢ = ( ðĨ â ð― , ðĶ â ðū âĶ ( âĐ ð§ â ð â ðī â ð â ðĩ ( ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) ) ) |
17 |
|
simprl |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) ) â ðĨ = [ ð ] ð
) |
18 |
17
|
eqeq1d |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) ) â ( ðĨ = [ ð ] ð
â [ ð ] ð
= [ ð ] ð
) ) |
19 |
|
simprr |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) ) â ðĶ = [ ð ] ð ) |
20 |
19
|
eqeq1d |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) ) â ( ðĶ = [ ð ] ð â [ ð ] ð = [ ð ] ð ) ) |
21 |
18 20
|
anbi12d |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) ) â ( ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) â ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) ) ) |
22 |
21
|
anbi1d |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) ) â ( ( ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) â ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) ) |
23 |
22
|
2rexbidv |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) ) â ( â ð â ðī â ð â ðĩ ( ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) â â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) ) |
24 |
23
|
iotabidv |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) ) â ( âĐ ð§ â ð â ðī â ð â ðĩ ( ( ðĨ = [ ð ] ð
â§ ðĶ = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) = ( âĐ ð§ â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) ) |
25 |
|
ecelqsg |
âĒ ( ( ð
â ð â§ ð â ðī ) â [ ð ] ð
â ( ðī / ð
) ) |
26 |
25 1
|
eleqtrrdi |
âĒ ( ( ð
â ð â§ ð â ðī ) â [ ð ] ð
â ð― ) |
27 |
13 26
|
sylan |
âĒ ( ( ð â§ ð â ðī ) â [ ð ] ð
â ð― ) |
28 |
27
|
3adant3 |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â [ ð ] ð
â ð― ) |
29 |
|
ecelqsg |
âĒ ( ( ð â ð â§ ð â ðĩ ) â [ ð ] ð â ( ðĩ / ð ) ) |
30 |
29 2
|
eleqtrrdi |
âĒ ( ( ð â ð â§ ð â ðĩ ) â [ ð ] ð â ðū ) |
31 |
14 30
|
sylan |
âĒ ( ( ð â§ ð â ðĩ ) â [ ð ] ð â ðū ) |
32 |
31
|
3adant2 |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â [ ð ] ð â ðū ) |
33 |
|
iotaex |
âĒ ( âĐ ð§ â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) â V |
34 |
33
|
a1i |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â ( âĐ ð§ â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) â V ) |
35 |
16 24 28 32 34
|
ovmpod |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â ( [ ð ] ð
âĻĢ [ ð ] ð ) = ( âĐ ð§ â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) ) |
36 |
|
eqid |
âĒ [ ð ] ð
= [ ð ] ð
|
37 |
|
eqid |
âĒ [ ð ] ð = [ ð ] ð |
38 |
36 37
|
pm3.2i |
âĒ ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) |
39 |
|
eqid |
âĒ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð |
40 |
38 39
|
pm3.2i |
âĒ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) |
41 |
|
eceq1 |
âĒ ( ð = ð â [ ð ] ð
= [ ð ] ð
) |
42 |
41
|
eqeq2d |
âĒ ( ð = ð â ( [ ð ] ð
= [ ð ] ð
â [ ð ] ð
= [ ð ] ð
) ) |
43 |
42
|
anbi1d |
âĒ ( ð = ð â ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) ) ) |
44 |
|
oveq1 |
âĒ ( ð = ð â ( ð + ð ) = ( ð + ð ) ) |
45 |
44
|
eceq1d |
âĒ ( ð = ð â [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) |
46 |
45
|
eqeq2d |
âĒ ( ð = ð â ( [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð â [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) |
47 |
43 46
|
anbi12d |
âĒ ( ð = ð â ( ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) â ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) ) |
48 |
|
eceq1 |
âĒ ( ð = ð â [ ð ] ð = [ ð ] ð ) |
49 |
48
|
eqeq2d |
âĒ ( ð = ð â ( [ ð ] ð = [ ð ] ð â [ ð ] ð = [ ð ] ð ) ) |
50 |
49
|
anbi2d |
âĒ ( ð = ð â ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) ) ) |
51 |
|
oveq2 |
âĒ ( ð = ð â ( ð + ð ) = ( ð + ð ) ) |
52 |
51
|
eceq1d |
âĒ ( ð = ð â [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) |
53 |
52
|
eqeq2d |
âĒ ( ð = ð â ( [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð â [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) |
54 |
50 53
|
anbi12d |
âĒ ( ð = ð â ( ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) â ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) ) |
55 |
47 54
|
rspc2ev |
âĒ ( ( ð â ðī â§ ð â ðĩ â§ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) â â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) |
56 |
40 55
|
mp3an3 |
âĒ ( ( ð â ðī â§ ð â ðĩ ) â â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) |
57 |
56
|
3adant1 |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) |
58 |
|
ecexg |
âĒ ( ð â ð â [ ( ð + ð ) ] ð â V ) |
59 |
3 58
|
syl |
âĒ ( ð â [ ( ð + ð ) ] ð â V ) |
60 |
59
|
3ad2ant1 |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â [ ( ð + ð ) ] ð â V ) |
61 |
|
simp1 |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â ð ) |
62 |
1 2 3 4 5 6 7 8 9 10 11
|
eroveu |
âĒ ( ( ð â§ ( [ ð ] ð
â ð― â§ [ ð ] ð â ðū ) ) â â! ð§ â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) |
63 |
61 28 32 62
|
syl12anc |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â â! ð§ â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) |
64 |
|
simpr |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ð§ = [ ( ð + ð ) ] ð ) â ð§ = [ ( ð + ð ) ] ð ) |
65 |
64
|
eqeq1d |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ð§ = [ ( ð + ð ) ] ð ) â ( ð§ = [ ( ð + ð ) ] ð â [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) |
66 |
65
|
anbi2d |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ð§ = [ ( ð + ð ) ] ð ) â ( ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) â ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) ) |
67 |
66
|
2rexbidv |
âĒ ( ( ( ð â§ ð â ðī â§ ð â ðĩ ) â§ ð§ = [ ( ð + ð ) ] ð ) â ( â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) â â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) ) ) |
68 |
60 63 67
|
iota2d |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â ( â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ [ ( ð + ð ) ] ð = [ ( ð + ð ) ] ð ) â ( âĐ ð§ â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) = [ ( ð + ð ) ] ð ) ) |
69 |
57 68
|
mpbid |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â ( âĐ ð§ â ð â ðī â ð â ðĩ ( ( [ ð ] ð
= [ ð ] ð
â§ [ ð ] ð = [ ð ] ð ) â§ ð§ = [ ( ð + ð ) ] ð ) ) = [ ( ð + ð ) ] ð ) |
70 |
35 69
|
eqtrd |
âĒ ( ( ð â§ ð â ðī â§ ð â ðĩ ) â ( [ ð ] ð
âĻĢ [ ð ] ð ) = [ ( ð + ð ) ] ð ) |