| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eropr.1 | ⊢ 𝐽  =  ( 𝐴  /  𝑅 ) | 
						
							| 2 |  | eropr.2 | ⊢ 𝐾  =  ( 𝐵  /  𝑆 ) | 
						
							| 3 |  | eropr.3 | ⊢ ( 𝜑  →  𝑇  ∈  𝑍 ) | 
						
							| 4 |  | eropr.4 | ⊢ ( 𝜑  →  𝑅  Er  𝑈 ) | 
						
							| 5 |  | eropr.5 | ⊢ ( 𝜑  →  𝑆  Er  𝑉 ) | 
						
							| 6 |  | eropr.6 | ⊢ ( 𝜑  →  𝑇  Er  𝑊 ) | 
						
							| 7 |  | eropr.7 | ⊢ ( 𝜑  →  𝐴  ⊆  𝑈 ) | 
						
							| 8 |  | eropr.8 | ⊢ ( 𝜑  →  𝐵  ⊆  𝑉 ) | 
						
							| 9 |  | eropr.9 | ⊢ ( 𝜑  →  𝐶  ⊆  𝑊 ) | 
						
							| 10 |  | eropr.10 | ⊢ ( 𝜑  →   +  : ( 𝐴  ×  𝐵 ) ⟶ 𝐶 ) | 
						
							| 11 |  | eropr.11 | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝐴  ∧  𝑠  ∈  𝐴 )  ∧  ( 𝑡  ∈  𝐵  ∧  𝑢  ∈  𝐵 ) ) )  →  ( ( 𝑟 𝑅 𝑠  ∧  𝑡 𝑆 𝑢 )  →  ( 𝑟  +  𝑡 ) 𝑇 ( 𝑠  +  𝑢 ) ) ) | 
						
							| 12 |  | eropr.12 | ⊢  ⨣   =  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑧 〉  ∣  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) } | 
						
							| 13 |  | eropr.13 | ⊢ ( 𝜑  →  𝑅  ∈  𝑋 ) | 
						
							| 14 |  | eropr.14 | ⊢ ( 𝜑  →  𝑆  ∈  𝑌 ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 | erovlem | ⊢ ( 𝜑  →   ⨣   =  ( 𝑥  ∈  𝐽 ,  𝑦  ∈  𝐾  ↦  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →   ⨣   =  ( 𝑥  ∈  𝐽 ,  𝑦  ∈  𝐾  ↦  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  ( 𝑥  =  [ 𝑃 ] 𝑅  ∧  𝑦  =  [ 𝑄 ] 𝑆 ) )  →  𝑥  =  [ 𝑃 ] 𝑅 ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  ( 𝑥  =  [ 𝑃 ] 𝑅  ∧  𝑦  =  [ 𝑄 ] 𝑆 ) )  →  ( 𝑥  =  [ 𝑝 ] 𝑅  ↔  [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅 ) ) | 
						
							| 19 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  ( 𝑥  =  [ 𝑃 ] 𝑅  ∧  𝑦  =  [ 𝑄 ] 𝑆 ) )  →  𝑦  =  [ 𝑄 ] 𝑆 ) | 
						
							| 20 | 19 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  ( 𝑥  =  [ 𝑃 ] 𝑅  ∧  𝑦  =  [ 𝑄 ] 𝑆 ) )  →  ( 𝑦  =  [ 𝑞 ] 𝑆  ↔  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 ) ) | 
						
							| 21 | 18 20 | anbi12d | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  ( 𝑥  =  [ 𝑃 ] 𝑅  ∧  𝑦  =  [ 𝑄 ] 𝑆 ) )  →  ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ↔  ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 ) ) ) | 
						
							| 22 | 21 | anbi1d | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  ( 𝑥  =  [ 𝑃 ] 𝑅  ∧  𝑦  =  [ 𝑄 ] 𝑆 ) )  →  ( ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 23 | 22 | 2rexbidv | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  ( 𝑥  =  [ 𝑃 ] 𝑅  ∧  𝑦  =  [ 𝑄 ] 𝑆 ) )  →  ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 24 | 23 | iotabidv | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  ( 𝑥  =  [ 𝑃 ] 𝑅  ∧  𝑦  =  [ 𝑄 ] 𝑆 ) )  →  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 25 |  | ecelqsg | ⊢ ( ( 𝑅  ∈  𝑋  ∧  𝑃  ∈  𝐴 )  →  [ 𝑃 ] 𝑅  ∈  ( 𝐴  /  𝑅 ) ) | 
						
							| 26 | 25 1 | eleqtrrdi | ⊢ ( ( 𝑅  ∈  𝑋  ∧  𝑃  ∈  𝐴 )  →  [ 𝑃 ] 𝑅  ∈  𝐽 ) | 
						
							| 27 | 13 26 | sylan | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴 )  →  [ 𝑃 ] 𝑅  ∈  𝐽 ) | 
						
							| 28 | 27 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  [ 𝑃 ] 𝑅  ∈  𝐽 ) | 
						
							| 29 |  | ecelqsg | ⊢ ( ( 𝑆  ∈  𝑌  ∧  𝑄  ∈  𝐵 )  →  [ 𝑄 ] 𝑆  ∈  ( 𝐵  /  𝑆 ) ) | 
						
							| 30 | 29 2 | eleqtrrdi | ⊢ ( ( 𝑆  ∈  𝑌  ∧  𝑄  ∈  𝐵 )  →  [ 𝑄 ] 𝑆  ∈  𝐾 ) | 
						
							| 31 | 14 30 | sylan | ⊢ ( ( 𝜑  ∧  𝑄  ∈  𝐵 )  →  [ 𝑄 ] 𝑆  ∈  𝐾 ) | 
						
							| 32 | 31 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  [ 𝑄 ] 𝑆  ∈  𝐾 ) | 
						
							| 33 |  | iotaex | ⊢ ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  ∈  V ) | 
						
							| 35 | 16 24 28 32 34 | ovmpod | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  ( [ 𝑃 ] 𝑅  ⨣  [ 𝑄 ] 𝑆 )  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 36 |  | eqid | ⊢ [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅 | 
						
							| 37 |  | eqid | ⊢ [ 𝑄 ] 𝑆  =  [ 𝑄 ] 𝑆 | 
						
							| 38 | 36 37 | pm3.2i | ⊢ ( [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑄 ] 𝑆 ) | 
						
							| 39 |  | eqid | ⊢ [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 | 
						
							| 40 | 38 39 | pm3.2i | ⊢ ( ( [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑄 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 ) | 
						
							| 41 |  | eceq1 | ⊢ ( 𝑝  =  𝑃  →  [ 𝑝 ] 𝑅  =  [ 𝑃 ] 𝑅 ) | 
						
							| 42 | 41 | eqeq2d | ⊢ ( 𝑝  =  𝑃  →  ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ↔  [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅 ) ) | 
						
							| 43 | 42 | anbi1d | ⊢ ( 𝑝  =  𝑃  →  ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ↔  ( [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 ) ) ) | 
						
							| 44 |  | oveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝  +  𝑞 )  =  ( 𝑃  +  𝑞 ) ) | 
						
							| 45 | 44 | eceq1d | ⊢ ( 𝑝  =  𝑃  →  [ ( 𝑝  +  𝑞 ) ] 𝑇  =  [ ( 𝑃  +  𝑞 ) ] 𝑇 ) | 
						
							| 46 | 45 | eqeq2d | ⊢ ( 𝑝  =  𝑃  →  ( [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑝  +  𝑞 ) ] 𝑇  ↔  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑃  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 47 | 43 46 | anbi12d | ⊢ ( 𝑝  =  𝑃  →  ( ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ( ( [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑃  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 48 |  | eceq1 | ⊢ ( 𝑞  =  𝑄  →  [ 𝑞 ] 𝑆  =  [ 𝑄 ] 𝑆 ) | 
						
							| 49 | 48 | eqeq2d | ⊢ ( 𝑞  =  𝑄  →  ( [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆  ↔  [ 𝑄 ] 𝑆  =  [ 𝑄 ] 𝑆 ) ) | 
						
							| 50 | 49 | anbi2d | ⊢ ( 𝑞  =  𝑄  →  ( ( [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ↔  ( [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑄 ] 𝑆 ) ) ) | 
						
							| 51 |  | oveq2 | ⊢ ( 𝑞  =  𝑄  →  ( 𝑃  +  𝑞 )  =  ( 𝑃  +  𝑄 ) ) | 
						
							| 52 | 51 | eceq1d | ⊢ ( 𝑞  =  𝑄  →  [ ( 𝑃  +  𝑞 ) ] 𝑇  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 ) | 
						
							| 53 | 52 | eqeq2d | ⊢ ( 𝑞  =  𝑄  →  ( [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑃  +  𝑞 ) ] 𝑇  ↔  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 ) ) | 
						
							| 54 | 50 53 | anbi12d | ⊢ ( 𝑞  =  𝑄  →  ( ( ( [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑃  +  𝑞 ) ] 𝑇 )  ↔  ( ( [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑄 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 ) ) ) | 
						
							| 55 | 47 54 | rspc2ev | ⊢ ( ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵  ∧  ( ( [ 𝑃 ] 𝑅  =  [ 𝑃 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑄 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 ) )  →  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 56 | 40 55 | mp3an3 | ⊢ ( ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 57 | 56 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 58 |  | ecexg | ⊢ ( 𝑇  ∈  𝑍  →  [ ( 𝑃  +  𝑄 ) ] 𝑇  ∈  V ) | 
						
							| 59 | 3 58 | syl | ⊢ ( 𝜑  →  [ ( 𝑃  +  𝑄 ) ] 𝑇  ∈  V ) | 
						
							| 60 | 59 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  [ ( 𝑃  +  𝑄 ) ] 𝑇  ∈  V ) | 
						
							| 61 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  𝜑 ) | 
						
							| 62 | 1 2 3 4 5 6 7 8 9 10 11 | eroveu | ⊢ ( ( 𝜑  ∧  ( [ 𝑃 ] 𝑅  ∈  𝐽  ∧  [ 𝑄 ] 𝑆  ∈  𝐾 ) )  →  ∃! 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 63 | 61 28 32 62 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  ∃! 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 64 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  𝑧  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 )  →  𝑧  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 ) | 
						
							| 65 | 64 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  𝑧  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 )  →  ( 𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇  ↔  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 66 | 65 | anbi2d | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  𝑧  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 )  →  ( ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 67 | 66 | 2rexbidv | ⊢ ( ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  𝑧  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 )  →  ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 68 | 60 63 67 | iota2d | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  [ ( 𝑃  +  𝑄 ) ] 𝑇  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 ) ) | 
						
							| 69 | 57 68 | mpbid | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( [ 𝑃 ] 𝑅  =  [ 𝑝 ] 𝑅  ∧  [ 𝑄 ] 𝑆  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 ) | 
						
							| 70 | 35 69 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  →  ( [ 𝑃 ] 𝑅  ⨣  [ 𝑄 ] 𝑆 )  =  [ ( 𝑃  +  𝑄 ) ] 𝑇 ) |