Step |
Hyp |
Ref |
Expression |
1 |
|
eropr.1 |
⊢ 𝐽 = ( 𝐴 / 𝑅 ) |
2 |
|
eropr.2 |
⊢ 𝐾 = ( 𝐵 / 𝑆 ) |
3 |
|
eropr.3 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) |
4 |
|
eropr.4 |
⊢ ( 𝜑 → 𝑅 Er 𝑈 ) |
5 |
|
eropr.5 |
⊢ ( 𝜑 → 𝑆 Er 𝑉 ) |
6 |
|
eropr.6 |
⊢ ( 𝜑 → 𝑇 Er 𝑊 ) |
7 |
|
eropr.7 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
8 |
|
eropr.8 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) |
9 |
|
eropr.9 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) |
10 |
|
eropr.10 |
⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
11 |
|
eropr.11 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) |
12 |
|
elqsi |
⊢ ( 𝑋 ∈ ( 𝐴 / 𝑅 ) → ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ) |
13 |
12 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐽 → ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ) |
14 |
|
elqsi |
⊢ ( 𝑌 ∈ ( 𝐵 / 𝑆 ) → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) |
15 |
14 2
|
eleq2s |
⊢ ( 𝑌 ∈ 𝐾 → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) |
16 |
13 15
|
anim12i |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) → ( ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) ) |
18 |
|
reeanv |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑇 ∈ 𝑍 ) |
21 |
|
ecexg |
⊢ ( 𝑇 ∈ 𝑍 → [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ V ) |
22 |
|
elisset |
⊢ ( [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ V → ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) |
23 |
20 21 22
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) |
24 |
23
|
biantrud |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
25 |
24
|
2rexbidv |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
26 |
19 25
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
27 |
|
19.42v |
⊢ ( ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
28 |
27
|
bicomi |
⊢ ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
29 |
28
|
rexbii |
⊢ ( ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑞 ∈ 𝐵 ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
30 |
|
rexcom4 |
⊢ ( ∃ 𝑞 ∈ 𝐵 ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
31 |
29 30
|
bitri |
⊢ ( ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
32 |
31
|
rexbii |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
33 |
|
rexcom4 |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
34 |
32 33
|
bitri |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
35 |
26 34
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
36 |
|
reeanv |
⊢ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ↔ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑠 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
37 |
|
eceq1 |
⊢ ( 𝑝 = 𝑟 → [ 𝑝 ] 𝑅 = [ 𝑟 ] 𝑅 ) |
38 |
37
|
eqeq2d |
⊢ ( 𝑝 = 𝑟 → ( 𝑋 = [ 𝑝 ] 𝑅 ↔ 𝑋 = [ 𝑟 ] 𝑅 ) ) |
39 |
38
|
anbi1d |
⊢ ( 𝑝 = 𝑟 → ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ) ) |
40 |
|
oveq1 |
⊢ ( 𝑝 = 𝑟 → ( 𝑝 + 𝑞 ) = ( 𝑟 + 𝑞 ) ) |
41 |
40
|
eceq1d |
⊢ ( 𝑝 = 𝑟 → [ ( 𝑝 + 𝑞 ) ] 𝑇 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑝 = 𝑟 → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) ) |
43 |
39 42
|
anbi12d |
⊢ ( 𝑝 = 𝑟 → ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) ) ) |
44 |
|
eceq1 |
⊢ ( 𝑞 = 𝑡 → [ 𝑞 ] 𝑆 = [ 𝑡 ] 𝑆 ) |
45 |
44
|
eqeq2d |
⊢ ( 𝑞 = 𝑡 → ( 𝑌 = [ 𝑞 ] 𝑆 ↔ 𝑌 = [ 𝑡 ] 𝑆 ) ) |
46 |
45
|
anbi2d |
⊢ ( 𝑞 = 𝑡 → ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ) ) |
47 |
|
oveq2 |
⊢ ( 𝑞 = 𝑡 → ( 𝑟 + 𝑞 ) = ( 𝑟 + 𝑡 ) ) |
48 |
47
|
eceq1d |
⊢ ( 𝑞 = 𝑡 → [ ( 𝑟 + 𝑞 ) ] 𝑇 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) |
49 |
48
|
eqeq2d |
⊢ ( 𝑞 = 𝑡 → ( 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ↔ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ) |
50 |
46 49
|
anbi12d |
⊢ ( 𝑞 = 𝑡 → ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ) ) |
51 |
43 50
|
cbvrex2vw |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑟 ∈ 𝐴 ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ) |
52 |
|
eceq1 |
⊢ ( 𝑝 = 𝑠 → [ 𝑝 ] 𝑅 = [ 𝑠 ] 𝑅 ) |
53 |
52
|
eqeq2d |
⊢ ( 𝑝 = 𝑠 → ( 𝑋 = [ 𝑝 ] 𝑅 ↔ 𝑋 = [ 𝑠 ] 𝑅 ) ) |
54 |
53
|
anbi1d |
⊢ ( 𝑝 = 𝑠 → ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ) ) |
55 |
|
oveq1 |
⊢ ( 𝑝 = 𝑠 → ( 𝑝 + 𝑞 ) = ( 𝑠 + 𝑞 ) ) |
56 |
55
|
eceq1d |
⊢ ( 𝑝 = 𝑠 → [ ( 𝑝 + 𝑞 ) ] 𝑇 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) |
57 |
56
|
eqeq2d |
⊢ ( 𝑝 = 𝑠 → ( 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) ) |
58 |
54 57
|
anbi12d |
⊢ ( 𝑝 = 𝑠 → ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) ) ) |
59 |
|
eceq1 |
⊢ ( 𝑞 = 𝑢 → [ 𝑞 ] 𝑆 = [ 𝑢 ] 𝑆 ) |
60 |
59
|
eqeq2d |
⊢ ( 𝑞 = 𝑢 → ( 𝑌 = [ 𝑞 ] 𝑆 ↔ 𝑌 = [ 𝑢 ] 𝑆 ) ) |
61 |
60
|
anbi2d |
⊢ ( 𝑞 = 𝑢 → ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ) ) |
62 |
|
oveq2 |
⊢ ( 𝑞 = 𝑢 → ( 𝑠 + 𝑞 ) = ( 𝑠 + 𝑢 ) ) |
63 |
62
|
eceq1d |
⊢ ( 𝑞 = 𝑢 → [ ( 𝑠 + 𝑞 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) |
64 |
63
|
eqeq2d |
⊢ ( 𝑞 = 𝑢 → ( 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ↔ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
65 |
61 64
|
anbi12d |
⊢ ( 𝑞 = 𝑢 → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
66 |
58 65
|
cbvrex2vw |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑠 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
67 |
51 66
|
anbi12i |
⊢ ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ↔ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑠 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
68 |
36 67
|
bitr4i |
⊢ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ↔ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
69 |
|
reeanv |
⊢ ( ∃ 𝑡 ∈ 𝐵 ∃ 𝑢 ∈ 𝐵 ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ↔ ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
70 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑅 Er 𝑈 ) |
71 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝐴 ⊆ 𝑈 ) |
72 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑟 ∈ 𝐴 ) |
73 |
71 72
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑟 ∈ 𝑈 ) |
74 |
70 73
|
erth |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑟 𝑅 𝑠 ↔ [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ) ) |
75 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑆 Er 𝑉 ) |
76 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝐵 ⊆ 𝑉 ) |
77 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑡 ∈ 𝐵 ) |
78 |
76 77
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑡 ∈ 𝑉 ) |
79 |
75 78
|
erth |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑡 𝑆 𝑢 ↔ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) |
80 |
74 79
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) ↔ ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) ) |
81 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑇 Er 𝑊 ) |
82 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝐶 ⊆ 𝑊 ) |
83 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
84 |
83 72 77
|
fovrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑟 + 𝑡 ) ∈ 𝐶 ) |
85 |
82 84
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑟 + 𝑡 ) ∈ 𝑊 ) |
86 |
81 85
|
erth |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
87 |
11 80 86
|
3imtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) → [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
88 |
|
eqeq2 |
⊢ ( 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → ( [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
89 |
88
|
biimprcd |
⊢ ( [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → ( 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
90 |
87 89
|
syl6 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) → ( 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) ) |
91 |
90
|
impd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
92 |
|
eqeq1 |
⊢ ( 𝑋 = [ 𝑟 ] 𝑅 → ( 𝑋 = [ 𝑠 ] 𝑅 ↔ [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ) ) |
93 |
|
eqeq1 |
⊢ ( 𝑌 = [ 𝑡 ] 𝑆 → ( 𝑌 = [ 𝑢 ] 𝑆 ↔ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) |
94 |
92 93
|
bi2anan9 |
⊢ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) → ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ↔ ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) ) |
95 |
94
|
anbi1d |
⊢ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ↔ ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
96 |
95
|
adantr |
⊢ ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ↔ ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
97 |
|
eqeq1 |
⊢ ( 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 → ( 𝑧 = 𝑤 ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
98 |
97
|
adantl |
⊢ ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( 𝑧 = 𝑤 ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
99 |
96 98
|
imbi12d |
⊢ ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → 𝑧 = 𝑤 ) ↔ ( ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) ) |
100 |
91 99
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → 𝑧 = 𝑤 ) ) ) |
101 |
100
|
impd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
102 |
101
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ( ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
103 |
102
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) → ( ∃ 𝑡 ∈ 𝐵 ∃ 𝑢 ∈ 𝐵 ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
104 |
69 103
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) → ( ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
105 |
104
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
106 |
68 105
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
108 |
107
|
alrimivv |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
109 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
110 |
109
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
111 |
110
|
2rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
112 |
111
|
eu4 |
⊢ ( ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) ) |
113 |
35 108 112
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |