| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eropr.1 | ⊢ 𝐽  =  ( 𝐴  /  𝑅 ) | 
						
							| 2 |  | eropr.2 | ⊢ 𝐾  =  ( 𝐵  /  𝑆 ) | 
						
							| 3 |  | eropr.3 | ⊢ ( 𝜑  →  𝑇  ∈  𝑍 ) | 
						
							| 4 |  | eropr.4 | ⊢ ( 𝜑  →  𝑅  Er  𝑈 ) | 
						
							| 5 |  | eropr.5 | ⊢ ( 𝜑  →  𝑆  Er  𝑉 ) | 
						
							| 6 |  | eropr.6 | ⊢ ( 𝜑  →  𝑇  Er  𝑊 ) | 
						
							| 7 |  | eropr.7 | ⊢ ( 𝜑  →  𝐴  ⊆  𝑈 ) | 
						
							| 8 |  | eropr.8 | ⊢ ( 𝜑  →  𝐵  ⊆  𝑉 ) | 
						
							| 9 |  | eropr.9 | ⊢ ( 𝜑  →  𝐶  ⊆  𝑊 ) | 
						
							| 10 |  | eropr.10 | ⊢ ( 𝜑  →   +  : ( 𝐴  ×  𝐵 ) ⟶ 𝐶 ) | 
						
							| 11 |  | eropr.11 | ⊢ ( ( 𝜑  ∧  ( ( 𝑟  ∈  𝐴  ∧  𝑠  ∈  𝐴 )  ∧  ( 𝑡  ∈  𝐵  ∧  𝑢  ∈  𝐵 ) ) )  →  ( ( 𝑟 𝑅 𝑠  ∧  𝑡 𝑆 𝑢 )  →  ( 𝑟  +  𝑡 ) 𝑇 ( 𝑠  +  𝑢 ) ) ) | 
						
							| 12 |  | eropr.12 | ⊢  ⨣   =  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑧 〉  ∣  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) } | 
						
							| 13 |  | simpl | ⊢ ( ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  →  ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 ) ) | 
						
							| 14 | 13 | reximi | ⊢ ( ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  →  ∃ 𝑞  ∈  𝐵 ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 ) ) | 
						
							| 15 | 14 | reximi | ⊢ ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  →  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 ) ) | 
						
							| 16 | 1 | eleq2i | ⊢ ( 𝑥  ∈  𝐽  ↔  𝑥  ∈  ( 𝐴  /  𝑅 ) ) | 
						
							| 17 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 18 | 17 | elqs | ⊢ ( 𝑥  ∈  ( 𝐴  /  𝑅 )  ↔  ∃ 𝑝  ∈  𝐴 𝑥  =  [ 𝑝 ] 𝑅 ) | 
						
							| 19 | 16 18 | bitri | ⊢ ( 𝑥  ∈  𝐽  ↔  ∃ 𝑝  ∈  𝐴 𝑥  =  [ 𝑝 ] 𝑅 ) | 
						
							| 20 | 2 | eleq2i | ⊢ ( 𝑦  ∈  𝐾  ↔  𝑦  ∈  ( 𝐵  /  𝑆 ) ) | 
						
							| 21 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 22 | 21 | elqs | ⊢ ( 𝑦  ∈  ( 𝐵  /  𝑆 )  ↔  ∃ 𝑞  ∈  𝐵 𝑦  =  [ 𝑞 ] 𝑆 ) | 
						
							| 23 | 20 22 | bitri | ⊢ ( 𝑦  ∈  𝐾  ↔  ∃ 𝑞  ∈  𝐵 𝑦  =  [ 𝑞 ] 𝑆 ) | 
						
							| 24 | 19 23 | anbi12i | ⊢ ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ↔  ( ∃ 𝑝  ∈  𝐴 𝑥  =  [ 𝑝 ] 𝑅  ∧  ∃ 𝑞  ∈  𝐵 𝑦  =  [ 𝑞 ] 𝑆 ) ) | 
						
							| 25 |  | reeanv | ⊢ ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ↔  ( ∃ 𝑝  ∈  𝐴 𝑥  =  [ 𝑝 ] 𝑅  ∧  ∃ 𝑞  ∈  𝐵 𝑦  =  [ 𝑞 ] 𝑆 ) ) | 
						
							| 26 | 24 25 | bitr4i | ⊢ ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ↔  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 ) ) | 
						
							| 27 | 15 26 | sylibr | ⊢ ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  →  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 ) ) | 
						
							| 28 | 27 | pm4.71ri | ⊢ ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 11 | eroveu | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 ) )  →  ∃! 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 30 |  | iota1 | ⊢ ( ∃! 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  →  ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  =  𝑧 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 ) )  →  ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  =  𝑧 ) ) | 
						
							| 32 |  | eqcom | ⊢ ( ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  =  𝑧  ↔  𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 33 | 31 32 | bitrdi | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 ) )  →  ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) ) | 
						
							| 34 | 33 | pm5.32da | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  ↔  ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) ) ) | 
						
							| 35 | 28 34 | bitrid | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 )  ↔  ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) ) ) | 
						
							| 36 | 35 | oprabbidv | ⊢ ( 𝜑  →  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑧 〉  ∣  ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) }  =  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑧 〉  ∣  ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) } ) | 
						
							| 37 |  | df-mpo | ⊢ ( 𝑥  ∈  𝐽 ,  𝑦  ∈  𝐾  ↦  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) )  =  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑤  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) } | 
						
							| 38 |  | nfv | ⊢ Ⅎ 𝑤 ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 39 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 ) | 
						
							| 40 |  | nfiota1 | ⊢ Ⅎ 𝑧 ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 41 | 40 | nfeq2 | ⊢ Ⅎ 𝑧 𝑤  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) | 
						
							| 42 | 39 41 | nfan | ⊢ Ⅎ 𝑧 ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑤  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) | 
						
							| 43 |  | eqeq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) )  ↔  𝑤  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) ) | 
						
							| 44 | 43 | anbi2d | ⊢ ( 𝑧  =  𝑤  →  ( ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) )  ↔  ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑤  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) ) ) | 
						
							| 45 | 38 42 44 | cbvoprab3 | ⊢ { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑧 〉  ∣  ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) }  =  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑤 〉  ∣  ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑤  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) } | 
						
							| 46 | 37 45 | eqtr4i | ⊢ ( 𝑥  ∈  𝐽 ,  𝑦  ∈  𝐾  ↦  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) )  =  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑧 〉  ∣  ( ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐾 )  ∧  𝑧  =  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) } | 
						
							| 47 | 36 12 46 | 3eqtr4g | ⊢ ( 𝜑  →   ⨣   =  ( 𝑥  ∈  𝐽 ,  𝑦  ∈  𝐾  ↦  ( ℩ 𝑧 ∃ 𝑝  ∈  𝐴 ∃ 𝑞  ∈  𝐵 ( ( 𝑥  =  [ 𝑝 ] 𝑅  ∧  𝑦  =  [ 𝑞 ] 𝑆 )  ∧  𝑧  =  [ ( 𝑝  +  𝑞 ) ] 𝑇 ) ) ) ) |