Step |
Hyp |
Ref |
Expression |
1 |
|
eropr.1 |
⊢ 𝐽 = ( 𝐴 / 𝑅 ) |
2 |
|
eropr.2 |
⊢ 𝐾 = ( 𝐵 / 𝑆 ) |
3 |
|
eropr.3 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) |
4 |
|
eropr.4 |
⊢ ( 𝜑 → 𝑅 Er 𝑈 ) |
5 |
|
eropr.5 |
⊢ ( 𝜑 → 𝑆 Er 𝑉 ) |
6 |
|
eropr.6 |
⊢ ( 𝜑 → 𝑇 Er 𝑊 ) |
7 |
|
eropr.7 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
8 |
|
eropr.8 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) |
9 |
|
eropr.9 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) |
10 |
|
eropr.10 |
⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
11 |
|
eropr.11 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) |
12 |
|
eropr.12 |
⊢ ⨣ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } |
13 |
|
simpl |
⊢ ( ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ) |
14 |
13
|
reximi |
⊢ ( ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ∃ 𝑞 ∈ 𝐵 ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ) |
15 |
14
|
reximi |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ) |
16 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐽 ↔ 𝑥 ∈ ( 𝐴 / 𝑅 ) ) |
17 |
|
vex |
⊢ 𝑥 ∈ V |
18 |
17
|
elqs |
⊢ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑝 ∈ 𝐴 𝑥 = [ 𝑝 ] 𝑅 ) |
19 |
16 18
|
bitri |
⊢ ( 𝑥 ∈ 𝐽 ↔ ∃ 𝑝 ∈ 𝐴 𝑥 = [ 𝑝 ] 𝑅 ) |
20 |
2
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ( 𝐵 / 𝑆 ) ) |
21 |
|
vex |
⊢ 𝑦 ∈ V |
22 |
21
|
elqs |
⊢ ( 𝑦 ∈ ( 𝐵 / 𝑆 ) ↔ ∃ 𝑞 ∈ 𝐵 𝑦 = [ 𝑞 ] 𝑆 ) |
23 |
20 22
|
bitri |
⊢ ( 𝑦 ∈ 𝐾 ↔ ∃ 𝑞 ∈ 𝐵 𝑦 = [ 𝑞 ] 𝑆 ) |
24 |
19 23
|
anbi12i |
⊢ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑥 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑦 = [ 𝑞 ] 𝑆 ) ) |
25 |
|
reeanv |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑥 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑦 = [ 𝑞 ] 𝑆 ) ) |
26 |
24 25
|
bitr4i |
⊢ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ) |
27 |
15 26
|
sylibr |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) |
28 |
27
|
pm4.71ri |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
29 |
1 2 3 4 5 6 7 8 9 10 11
|
eroveu |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
30 |
|
iota1 |
⊢ ( ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = 𝑧 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = 𝑧 ) ) |
32 |
|
eqcom |
⊢ ( ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = 𝑧 ↔ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
33 |
31 32
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |
34 |
33
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) ) |
35 |
28 34
|
syl5bb |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) ) |
36 |
35
|
oprabbidv |
⊢ ( 𝜑 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } ) |
37 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } |
38 |
|
nfv |
⊢ Ⅎ 𝑤 ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) |
40 |
|
nfiota1 |
⊢ Ⅎ 𝑧 ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
41 |
40
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
42 |
39 41
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
43 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ↔ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |
44 |
43
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) ) |
45 |
38 42 44
|
cbvoprab3 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } |
46 |
37 45
|
eqtr4i |
⊢ ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } |
47 |
36 12 46
|
3eqtr4g |
⊢ ( 𝜑 → ⨣ = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |