Metamath Proof Explorer


Theorem erref

Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ersymb.1 ( 𝜑𝑅 Er 𝑋 )
erref.2 ( 𝜑𝐴𝑋 )
Assertion erref ( 𝜑𝐴 𝑅 𝐴 )

Proof

Step Hyp Ref Expression
1 ersymb.1 ( 𝜑𝑅 Er 𝑋 )
2 erref.2 ( 𝜑𝐴𝑋 )
3 erdm ( 𝑅 Er 𝑋 → dom 𝑅 = 𝑋 )
4 1 3 syl ( 𝜑 → dom 𝑅 = 𝑋 )
5 2 4 eleqtrrd ( 𝜑𝐴 ∈ dom 𝑅 )
6 eldmg ( 𝐴𝑋 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) )
7 2 6 syl ( 𝜑 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) )
8 5 7 mpbid ( 𝜑 → ∃ 𝑥 𝐴 𝑅 𝑥 )
9 1 adantr ( ( 𝜑𝐴 𝑅 𝑥 ) → 𝑅 Er 𝑋 )
10 simpr ( ( 𝜑𝐴 𝑅 𝑥 ) → 𝐴 𝑅 𝑥 )
11 9 10 10 ertr4d ( ( 𝜑𝐴 𝑅 𝑥 ) → 𝐴 𝑅 𝐴 )
12 8 11 exlimddv ( 𝜑𝐴 𝑅 𝐴 )