Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | errel | ⊢ ( 𝑅 Er 𝐴 → Rel 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er | ⊢ ( 𝑅 Er 𝐴 ↔ ( Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ( ◡ 𝑅 ∪ ( 𝑅 ∘ 𝑅 ) ) ⊆ 𝑅 ) ) | |
2 | 1 | simp1bi | ⊢ ( 𝑅 Er 𝐴 → Rel 𝑅 ) |