Metamath Proof Explorer


Theorem errel

Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion errel ( 𝑅 Er 𝐴 → Rel 𝑅 )

Proof

Step Hyp Ref Expression
1 df-er ( 𝑅 Er 𝐴 ↔ ( Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ( 𝑅 ∪ ( 𝑅𝑅 ) ) ⊆ 𝑅 ) )
2 1 simp1bi ( 𝑅 Er 𝐴 → Rel 𝑅 )