Metamath Proof Explorer


Theorem errn

Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion errn ( 𝑅 Er 𝐴 → ran 𝑅 = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-rn ran 𝑅 = dom 𝑅
2 ercnv ( 𝑅 Er 𝐴 𝑅 = 𝑅 )
3 2 dmeqd ( 𝑅 Er 𝐴 → dom 𝑅 = dom 𝑅 )
4 erdm ( 𝑅 Er 𝐴 → dom 𝑅 = 𝐴 )
5 3 4 eqtrd ( 𝑅 Er 𝐴 → dom 𝑅 = 𝐴 )
6 1 5 eqtrid ( 𝑅 Er 𝐴 → ran 𝑅 = 𝐴 )