Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | erssxp | ⊢ ( 𝑅 Er 𝐴 → 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | errel | ⊢ ( 𝑅 Er 𝐴 → Rel 𝑅 ) | |
2 | relssdmrn | ⊢ ( Rel 𝑅 → 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝑅 Er 𝐴 → 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
4 | erdm | ⊢ ( 𝑅 Er 𝐴 → dom 𝑅 = 𝐴 ) | |
5 | errn | ⊢ ( 𝑅 Er 𝐴 → ran 𝑅 = 𝐴 ) | |
6 | 4 5 | xpeq12d | ⊢ ( 𝑅 Er 𝐴 → ( dom 𝑅 × ran 𝑅 ) = ( 𝐴 × 𝐴 ) ) |
7 | 3 6 | sseqtrd | ⊢ ( 𝑅 Er 𝐴 → 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) |