Metamath Proof Explorer


Theorem erthi

Description: Basic property of equivalence relations. Part of Lemma 3N of Enderton p. 57. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses erthi.1 ( 𝜑𝑅 Er 𝑋 )
erthi.2 ( 𝜑𝐴 𝑅 𝐵 )
Assertion erthi ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 )

Proof

Step Hyp Ref Expression
1 erthi.1 ( 𝜑𝑅 Er 𝑋 )
2 erthi.2 ( 𝜑𝐴 𝑅 𝐵 )
3 1 2 ercl ( 𝜑𝐴𝑋 )
4 1 3 erth ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) )
5 2 4 mpbid ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 )