Metamath Proof Explorer
		
		
		
		Description:  The category of extensible structures is a category.  (Contributed by AV, 8-Mar-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | estrccat.c | ⊢ 𝐶  =  ( ExtStrCat ‘ 𝑈 ) | 
				
					|  | Assertion | estrccat | ⊢  ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | estrccat.c | ⊢ 𝐶  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 2 | 1 | estrccatid | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝐶  ∈  Cat  ∧  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝑈  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) ) | 
						
							| 3 | 2 | simpld | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat ) |