| Step | Hyp | Ref | Expression | 
						
							| 1 |  | estrchomfn.c | ⊢ 𝐶  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 2 |  | estrchomfn.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 3 |  | estrchomfn.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 4 | 1 2 3 | estrchomfn | ⊢ ( 𝜑  →  𝐻  Fn  ( 𝑈  ×  𝑈 ) ) | 
						
							| 5 | 1 2 | estrcbas | ⊢ ( 𝜑  →  𝑈  =  ( Base ‘ 𝐶 ) ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  𝑈 ) | 
						
							| 7 | 6 | sqxpeqd | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  =  ( 𝑈  ×  𝑈 ) ) | 
						
							| 8 | 7 | fneq2d | ⊢ ( 𝜑  →  ( 𝐻  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  ↔  𝐻  Fn  ( 𝑈  ×  𝑈 ) ) ) | 
						
							| 9 | 4 8 | mpbird | ⊢ ( 𝜑  →  𝐻  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐶 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 12 | 10 11 3 | fnhomeqhomf | ⊢ ( 𝐻  Fn  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) )  →  ( Homf  ‘ 𝐶 )  =  𝐻 ) | 
						
							| 13 | 9 12 | syl | ⊢ ( 𝜑  →  ( Homf  ‘ 𝐶 )  =  𝐻 ) |