| Step | Hyp | Ref | Expression | 
						
							| 1 |  | estrccat.c | ⊢ 𝐶  =  ( ExtStrCat ‘ 𝑈 ) | 
						
							| 2 |  | estrcid.o | ⊢  1   =  ( Id ‘ 𝐶 ) | 
						
							| 3 |  | estrcid.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 4 |  | estrcid.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑈 ) | 
						
							| 5 | 1 | estrccatid | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝐶  ∈  Cat  ∧  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝑈  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  ( 𝐶  ∈  Cat  ∧  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝑈  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) ) | 
						
							| 7 | 6 | simprd | ⊢ ( 𝜑  →  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝑈  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 8 | 2 7 | eqtrid | ⊢ ( 𝜑  →   1   =  ( 𝑥  ∈  𝑈  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( Base ‘ 𝑥 )  =  ( Base ‘ 𝑋 ) ) | 
						
							| 10 | 9 | reseq2d | ⊢ ( 𝑥  =  𝑋  →  (  I   ↾  ( Base ‘ 𝑥 ) )  =  (  I   ↾  ( Base ‘ 𝑋 ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  (  I   ↾  ( Base ‘ 𝑥 ) )  =  (  I   ↾  ( Base ‘ 𝑋 ) ) ) | 
						
							| 12 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝑋 )  ∈  V ) | 
						
							| 13 | 12 | resiexd | ⊢ ( 𝜑  →  (  I   ↾  ( Base ‘ 𝑋 ) )  ∈  V ) | 
						
							| 14 | 8 11 4 13 | fvmptd | ⊢ ( 𝜑  →  (  1  ‘ 𝑋 )  =  (  I   ↾  ( Base ‘ 𝑋 ) ) ) |