Metamath Proof Explorer


Theorem esum

Description: Value of Euler's constant _e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006)

Ref Expression
Assertion esum e = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) )

Proof

Step Hyp Ref Expression
1 df-e e = ( exp ‘ 1 )
2 ax-1cn 1 ∈ ℂ
3 efval ( 1 ∈ ℂ → ( exp ‘ 1 ) = Σ 𝑘 ∈ ℕ0 ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) )
4 2 3 ax-mp ( exp ‘ 1 ) = Σ 𝑘 ∈ ℕ0 ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) )
5 nn0z ( 𝑘 ∈ ℕ0𝑘 ∈ ℤ )
6 1exp ( 𝑘 ∈ ℤ → ( 1 ↑ 𝑘 ) = 1 )
7 5 6 syl ( 𝑘 ∈ ℕ0 → ( 1 ↑ 𝑘 ) = 1 )
8 7 oveq1d ( 𝑘 ∈ ℕ0 → ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( 1 / ( ! ‘ 𝑘 ) ) )
9 8 sumeq2i Σ 𝑘 ∈ ℕ0 ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) )
10 1 4 9 3eqtri e = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) )