Description: Value of Euler's constant _e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | esum | ⊢ e = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-e | ⊢ e = ( exp ‘ 1 ) | |
2 | ax-1cn | ⊢ 1 ∈ ℂ | |
3 | efval | ⊢ ( 1 ∈ ℂ → ( exp ‘ 1 ) = Σ 𝑘 ∈ ℕ0 ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) | |
4 | 2 3 | ax-mp | ⊢ ( exp ‘ 1 ) = Σ 𝑘 ∈ ℕ0 ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) |
5 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
6 | 1exp | ⊢ ( 𝑘 ∈ ℤ → ( 1 ↑ 𝑘 ) = 1 ) | |
7 | 5 6 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( 1 ↑ 𝑘 ) = 1 ) |
8 | 7 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
9 | 8 | sumeq2i | ⊢ Σ 𝑘 ∈ ℕ0 ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) ) |
10 | 1 4 9 | 3eqtri | ⊢ e = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) ) |