Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ≠ 0 ) → 1 ∈ ℝ ) |
2 |
|
nn0abscl |
⊢ ( 𝑘 ∈ ℤ → ( abs ‘ 𝑘 ) ∈ ℕ0 ) |
3 |
2
|
nn0red |
⊢ ( 𝑘 ∈ ℤ → ( abs ‘ 𝑘 ) ∈ ℝ ) |
4 |
3
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ≠ 0 ) → ( abs ‘ 𝑘 ) ∈ ℝ ) |
5 |
|
nnabscl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ≠ 0 ) → ( abs ‘ 𝑘 ) ∈ ℕ ) |
6 |
5
|
nnge1d |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ≠ 0 ) → 1 ≤ ( abs ‘ 𝑘 ) ) |
7 |
1 4 6
|
lensymd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ≠ 0 ) → ¬ ( abs ‘ 𝑘 ) < 1 ) |
8 |
|
nan |
⊢ ( ( 𝑘 ∈ ℤ → ¬ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) ↔ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ≠ 0 ) → ¬ ( abs ‘ 𝑘 ) < 1 ) ) |
9 |
7 8
|
mpbir |
⊢ ( 𝑘 ∈ ℤ → ¬ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |
10 |
9
|
nrex |
⊢ ¬ ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) |
11 |
|
ere |
⊢ e ∈ ℝ |
12 |
11
|
recni |
⊢ e ∈ ℂ |
13 |
|
neldif |
⊢ ( ( e ∈ ℂ ∧ ¬ e ∈ ( ℂ ∖ 𝔸 ) ) → e ∈ 𝔸 ) |
14 |
12 13
|
mpan |
⊢ ( ¬ e ∈ ( ℂ ∖ 𝔸 ) → e ∈ 𝔸 ) |
15 |
|
ene0 |
⊢ e ≠ 0 |
16 |
|
elsng |
⊢ ( e ∈ ℂ → ( e ∈ { 0 } ↔ e = 0 ) ) |
17 |
12 16
|
ax-mp |
⊢ ( e ∈ { 0 } ↔ e = 0 ) |
18 |
15 17
|
nemtbir |
⊢ ¬ e ∈ { 0 } |
19 |
18
|
a1i |
⊢ ( ¬ e ∈ ( ℂ ∖ 𝔸 ) → ¬ e ∈ { 0 } ) |
20 |
14 19
|
eldifd |
⊢ ( ¬ e ∈ ( ℂ ∖ 𝔸 ) → e ∈ ( 𝔸 ∖ { 0 } ) ) |
21 |
|
elaa2 |
⊢ ( e ∈ ( 𝔸 ∖ { 0 } ) ↔ ( e ∈ ℂ ∧ ∃ 𝑞 ∈ ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ∧ ( 𝑞 ‘ e ) = 0 ) ) ) |
22 |
20 21
|
sylib |
⊢ ( ¬ e ∈ ( ℂ ∖ 𝔸 ) → ( e ∈ ℂ ∧ ∃ 𝑞 ∈ ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ∧ ( 𝑞 ‘ e ) = 0 ) ) ) |
23 |
22
|
simprd |
⊢ ( ¬ e ∈ ( ℂ ∖ 𝔸 ) → ∃ 𝑞 ∈ ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ∧ ( 𝑞 ‘ e ) = 0 ) ) |
24 |
|
simpl |
⊢ ( ( 𝑞 ∈ ( Poly ‘ ℤ ) ∧ ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ) → 𝑞 ∈ ( Poly ‘ ℤ ) ) |
25 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
26 |
|
n0p |
⊢ ( ( 𝑞 ∈ ( Poly ‘ ℤ ) ∧ 0 ∈ ℕ0 ∧ ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ) → 𝑞 ≠ 0𝑝 ) |
27 |
25 26
|
mp3an2 |
⊢ ( ( 𝑞 ∈ ( Poly ‘ ℤ ) ∧ ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ) → 𝑞 ≠ 0𝑝 ) |
28 |
|
nelsn |
⊢ ( 𝑞 ≠ 0𝑝 → ¬ 𝑞 ∈ { 0𝑝 } ) |
29 |
27 28
|
syl |
⊢ ( ( 𝑞 ∈ ( Poly ‘ ℤ ) ∧ ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ) → ¬ 𝑞 ∈ { 0𝑝 } ) |
30 |
24 29
|
eldifd |
⊢ ( ( 𝑞 ∈ ( Poly ‘ ℤ ) ∧ ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ) → 𝑞 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ) |
31 |
30
|
adantrr |
⊢ ( ( 𝑞 ∈ ( Poly ‘ ℤ ) ∧ ( ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ∧ ( 𝑞 ‘ e ) = 0 ) ) → 𝑞 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ) |
32 |
|
simprr |
⊢ ( ( 𝑞 ∈ ( Poly ‘ ℤ ) ∧ ( ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ∧ ( 𝑞 ‘ e ) = 0 ) ) → ( 𝑞 ‘ e ) = 0 ) |
33 |
|
eqid |
⊢ ( coeff ‘ 𝑞 ) = ( coeff ‘ 𝑞 ) |
34 |
|
simprl |
⊢ ( ( 𝑞 ∈ ( Poly ‘ ℤ ) ∧ ( ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ∧ ( 𝑞 ‘ e ) = 0 ) ) → ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ) |
35 |
|
eqid |
⊢ ( deg ‘ 𝑞 ) = ( deg ‘ 𝑞 ) |
36 |
|
eqid |
⊢ Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) = Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) |
37 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) |
38 |
|
fveq2 |
⊢ ( ℎ = 𝑙 → ( ( coeff ‘ 𝑞 ) ‘ ℎ ) = ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) ) |
39 |
|
oveq2 |
⊢ ( ℎ = 𝑙 → ( e ↑𝑐 ℎ ) = ( e ↑𝑐 𝑙 ) ) |
40 |
38 39
|
oveq12d |
⊢ ( ℎ = 𝑙 → ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) = ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) |
41 |
40
|
fveq2d |
⊢ ( ℎ = 𝑙 → ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) = ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) ) |
42 |
41
|
oveq1d |
⊢ ( ℎ = 𝑙 → ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) = ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) ) |
43 |
42
|
cbvsumv |
⊢ Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) = Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) |
44 |
43
|
a1i |
⊢ ( 𝑚 = 𝑛 → Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) = Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) ) |
45 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) = ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ! ‘ 𝑚 ) = ( ! ‘ 𝑛 ) ) |
47 |
45 46
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) = ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
48 |
44 47
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) = ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) |
49 |
48
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) |
50 |
49
|
a1i |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ) |
51 |
|
id |
⊢ ( 𝑚 = 𝑛 → 𝑚 = 𝑛 ) |
52 |
50 51
|
fveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) = ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( abs ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) ) = ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) ) |
54 |
53
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( abs ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) ) < 1 ↔ ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) < 1 ) ) |
55 |
54
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) ) < 1 ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) < 1 ) |
56 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑖 ) ) |
57 |
56
|
raleqdv |
⊢ ( 𝑗 = 𝑖 → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) < 1 ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) < 1 ) ) |
58 |
55 57
|
syl5bb |
⊢ ( 𝑗 = 𝑖 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) ) < 1 ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) < 1 ) ) |
59 |
58
|
cbvrabv |
⊢ { 𝑗 ∈ ℕ0 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) ) < 1 } = { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) < 1 } |
60 |
59
|
infeq1i |
⊢ inf ( { 𝑗 ∈ ℕ0 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) ) < 1 } , ℝ , < ) = inf ( { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑙 ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ 𝑙 ) · ( e ↑𝑐 𝑙 ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑛 ) ) < 1 } , ℝ , < ) |
61 |
|
eqid |
⊢ sup ( { ( abs ‘ ( ( coeff ‘ 𝑞 ) ‘ 0 ) ) , ( ! ‘ ( deg ‘ 𝑞 ) ) , inf ( { 𝑗 ∈ ℕ0 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) ) < 1 } , ℝ , < ) } , ℝ* , < ) = sup ( { ( abs ‘ ( ( coeff ‘ 𝑞 ) ‘ 0 ) ) , ( ! ‘ ( deg ‘ 𝑞 ) ) , inf ( { 𝑗 ∈ ℕ0 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( Σ ℎ ∈ ( 0 ... ( deg ‘ 𝑞 ) ) ( ( abs ‘ ( ( ( coeff ‘ 𝑞 ) ‘ ℎ ) · ( e ↑𝑐 ℎ ) ) ) · ( ( deg ‘ 𝑞 ) · ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ) ) · ( ( ( ( deg ‘ 𝑞 ) ↑ ( ( deg ‘ 𝑞 ) + 1 ) ) ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) ) < 1 } , ℝ , < ) } , ℝ* , < ) |
62 |
31 32 33 34 35 36 37 60 61
|
etransclem48 |
⊢ ( ( 𝑞 ∈ ( Poly ‘ ℤ ) ∧ ( ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ∧ ( 𝑞 ‘ e ) = 0 ) ) → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |
63 |
62
|
rexlimiva |
⊢ ( ∃ 𝑞 ∈ ( Poly ‘ ℤ ) ( ( ( coeff ‘ 𝑞 ) ‘ 0 ) ≠ 0 ∧ ( 𝑞 ‘ e ) = 0 ) → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |
64 |
23 63
|
syl |
⊢ ( ¬ e ∈ ( ℂ ∖ 𝔸 ) → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |
65 |
10 64
|
mt3 |
⊢ e ∈ ( ℂ ∖ 𝔸 ) |