Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem1.x |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
2 |
|
etransclem1.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
3 |
|
etransclem1.h |
⊢ 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
4 |
|
etransclem1.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑀 ) ) |
5 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℂ ) |
6 |
4
|
elfzelzd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
7 |
6
|
zcnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ ℂ ) |
9 |
5 8
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 − 𝐽 ) ∈ ℂ ) |
10 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
12 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
13 |
11 12
|
ifcld |
⊢ ( 𝜑 → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
15 |
9 14
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℂ ) |
16 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
17 |
15 16
|
fmptd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) : 𝑋 ⟶ ℂ ) |
18 |
|
oveq2 |
⊢ ( 𝑗 = 𝑛 → ( 𝑥 − 𝑗 ) = ( 𝑥 − 𝑛 ) ) |
19 |
|
eqeq1 |
⊢ ( 𝑗 = 𝑛 → ( 𝑗 = 0 ↔ 𝑛 = 0 ) ) |
20 |
19
|
ifbid |
⊢ ( 𝑗 = 𝑛 → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) = if ( 𝑛 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
21 |
18 20
|
oveq12d |
⊢ ( 𝑗 = 𝑛 → ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑥 − 𝑛 ) ↑ if ( 𝑛 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
22 |
21
|
mpteq2dv |
⊢ ( 𝑗 = 𝑛 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑛 ) ↑ if ( 𝑛 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
23 |
22
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑛 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑛 ) ↑ if ( 𝑛 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
24 |
3 23
|
eqtri |
⊢ 𝐻 = ( 𝑛 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑛 ) ↑ if ( 𝑛 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
25 |
|
oveq2 |
⊢ ( 𝑛 = 𝐽 → ( 𝑥 − 𝑛 ) = ( 𝑥 − 𝐽 ) ) |
26 |
|
eqeq1 |
⊢ ( 𝑛 = 𝐽 → ( 𝑛 = 0 ↔ 𝐽 = 0 ) ) |
27 |
26
|
ifbid |
⊢ ( 𝑛 = 𝐽 → if ( 𝑛 = 0 , ( 𝑃 − 1 ) , 𝑃 ) = if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
28 |
25 27
|
oveq12d |
⊢ ( 𝑛 = 𝐽 → ( ( 𝑥 − 𝑛 ) ↑ if ( 𝑛 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
29 |
28
|
mpteq2dv |
⊢ ( 𝑛 = 𝐽 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑛 ) ↑ if ( 𝑛 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
30 |
|
cnex |
⊢ ℂ ∈ V |
31 |
30
|
ssex |
⊢ ( 𝑋 ⊆ ℂ → 𝑋 ∈ V ) |
32 |
|
mptexg |
⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) |
33 |
1 31 32
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) |
34 |
24 29 4 33
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐽 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
35 |
34
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐽 ) : 𝑋 ⟶ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝐽 ) ↑ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) : 𝑋 ⟶ ℂ ) ) |
36 |
17 35
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐽 ) : 𝑋 ⟶ ℂ ) |