Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 0 ... 𝑛 ) = ( 0 ... 𝑚 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) = ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ) |
3 |
2
|
rabeqdv |
⊢ ( 𝑛 = 𝑚 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
4 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 𝑘 ) ) |
5 |
4
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) |
6 |
|
fveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ 𝑘 ) = ( 𝑑 ‘ 𝑘 ) ) |
7 |
6
|
sumeq2sdv |
⊢ ( 𝑐 = 𝑑 → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) ) |
8 |
5 7
|
eqtrid |
⊢ ( 𝑐 = 𝑑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑐 = 𝑑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 ↔ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑛 ) ) |
10 |
9
|
cbvrabv |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } = { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑛 } |
11 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑚 → ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑛 ↔ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 ) ) |
12 |
11
|
rabbidv |
⊢ ( 𝑛 = 𝑚 → { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑛 } = { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) |
13 |
10 12
|
eqtrid |
⊢ ( 𝑛 = 𝑚 → { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } = { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) |
14 |
3 13
|
eqtrd |
⊢ ( 𝑛 = 𝑚 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } = { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) |
15 |
14
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) = ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) |