| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem12.1 | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 2 |  | etransclem12.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑁 ) ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  =  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 5 |  | eqeq2 | ⊢ ( 𝑛  =  𝑁  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛  ↔  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 ) ) | 
						
							| 6 | 4 5 | rabeqbidv | ⊢ ( 𝑛  =  𝑁  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 7 |  | ovex | ⊢ ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∈  V | 
						
							| 8 | 7 | rabex | ⊢ { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  ∈  V ) | 
						
							| 10 | 1 6 2 9 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑁 )  =  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) |