Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem12.1 |
⊢ 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
2 |
|
etransclem12.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) = ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ) |
5 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑁 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 ↔ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 ) ) |
6 |
4 5
|
rabeqbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
7 |
|
ovex |
⊢ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∈ V |
8 |
7
|
rabex |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ∈ V ) |
10 |
1 6 2 9
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |