| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem13.x | ⊢ ( 𝜑  →  𝑋  ⊆  ℂ ) | 
						
							| 2 |  | etransclem13.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 3 |  | etransclem13.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 4 |  | etransclem13.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 5 |  | etransclem13.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 8 | 1 2 3 4 6 7 | etransclem4 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 10 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 11 | 10 | ssex | ⊢ ( 𝑋  ⊆  ℂ  →  𝑋  ∈  V ) | 
						
							| 12 |  | mptexg | ⊢ ( 𝑋  ∈  V  →  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V ) | 
						
							| 13 | 1 11 12 | 3syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  −  𝑗 )  =  ( 𝑦  −  𝑗 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 17 | 16 | cbvmptv | ⊢ ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 18 | 17 | mpteq2i | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 19 | 18 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V )  →  ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 )  =  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 20 | 9 14 19 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 )  =  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 21 | 20 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  =  𝑌 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 )  =  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝑥  =  𝑌  ∧  𝑦  =  𝑥 )  →  𝑦  =  𝑥 ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝑥  =  𝑌  ∧  𝑦  =  𝑥 )  →  𝑥  =  𝑌 ) | 
						
							| 24 | 22 23 | eqtrd | ⊢ ( ( 𝑥  =  𝑌  ∧  𝑦  =  𝑥 )  →  𝑦  =  𝑌 ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  −  𝑗 )  =  ( 𝑌  −  𝑗 ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 27 | 24 26 | syl | ⊢ ( ( 𝑥  =  𝑌  ∧  𝑦  =  𝑥 )  →  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 28 | 27 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  =  𝑌 )  ∧  𝑦  =  𝑥 )  →  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 29 | 28 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  =  𝑌 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑦  =  𝑥 )  →  ( ( 𝑦  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑌 )  →  𝑥  =  𝑌 ) | 
						
							| 31 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑌 )  →  𝑌  ∈  𝑋 ) | 
						
							| 32 | 30 31 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑌 )  →  𝑥  ∈  𝑋 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  =  𝑌 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 34 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑥  =  𝑌 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  V ) | 
						
							| 35 | 21 29 33 34 | fvmptd | ⊢ ( ( ( 𝜑  ∧  𝑥  =  𝑌 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 )  =  ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 36 | 35 | prodeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑌 )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 )  =  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 37 |  | prodex | ⊢ ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  V | 
						
							| 38 | 37 | a1i | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  V ) | 
						
							| 39 | 8 36 5 38 | fvmptd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑌 )  =  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑌  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) |