Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem16.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
2 |
|
etransclem16.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
1 2
|
etransclem12 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
4 |
|
fzfi |
⊢ ( 0 ... 𝑁 ) ∈ Fin |
5 |
|
fzfi |
⊢ ( 0 ... 𝑀 ) ∈ Fin |
6 |
|
mapfi |
⊢ ( ( ( 0 ... 𝑁 ) ∈ Fin ∧ ( 0 ... 𝑀 ) ∈ Fin ) → ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∈ Fin ) |
7 |
4 5 6
|
mp2an |
⊢ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∈ Fin |
8 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ⊆ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) |
9 |
|
ssfi |
⊢ ( ( ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∈ Fin ∧ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ⊆ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ) → { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ∈ Fin ) |
10 |
7 8 9
|
mp2an |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ∈ Fin |
11 |
3 10
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) ∈ Fin ) |