| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem18.s |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 2 |
|
etransclem18.x |
⊢ ( 𝜑 → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 3 |
|
etransclem18.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 4 |
|
etransclem18.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 5 |
|
etransclem18.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
| 6 |
|
etransclem18.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 7 |
|
etransclem18.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 8 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 10 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 12 |
|
ere |
⊢ e ∈ ℝ |
| 13 |
12
|
recni |
⊢ e ∈ ℂ |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → e ∈ ℂ ) |
| 15 |
6 7
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 17 |
16
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 18 |
17
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → - 𝑥 ∈ ℂ ) |
| 19 |
14 18
|
cxpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
| 20 |
1 2
|
dvdmsscn |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 21 |
20 3 5
|
etransclem8 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 23 |
22 16
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 24 |
19 23
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 25 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑦 = - 𝑥 → ( e ↑𝑐 𝑦 ) = ( e ↑𝑐 - 𝑥 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 = - 𝑥 ) → ( e ↑𝑐 𝑦 ) = ( e ↑𝑐 - 𝑥 ) ) |
| 28 |
15 20
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 29 |
28
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 30 |
29
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → - 𝑥 ∈ ℂ ) |
| 31 |
13
|
a1i |
⊢ ( 𝑥 ∈ ℂ → e ∈ ℂ ) |
| 32 |
|
negcl |
⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) |
| 33 |
31 32
|
cxpcld |
⊢ ( 𝑥 ∈ ℂ → ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
| 34 |
29 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
| 35 |
25 27 30 34
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) = ( e ↑𝑐 - 𝑥 ) ) |
| 36 |
35
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( e ↑𝑐 - 𝑥 ) = ( ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) |
| 37 |
36
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( e ↑𝑐 - 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) ) |
| 38 |
|
epr |
⊢ e ∈ ℝ+ |
| 39 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 40 |
39
|
a1i |
⊢ ( e ∈ ℝ+ → -∞ ∈ ℝ* ) |
| 41 |
|
0red |
⊢ ( e ∈ ℝ+ → 0 ∈ ℝ ) |
| 42 |
|
rpxr |
⊢ ( e ∈ ℝ+ → e ∈ ℝ* ) |
| 43 |
|
rpgt0 |
⊢ ( e ∈ ℝ+ → 0 < e ) |
| 44 |
40 41 42 43
|
gtnelioc |
⊢ ( e ∈ ℝ+ → ¬ e ∈ ( -∞ (,] 0 ) ) |
| 45 |
38 44
|
ax-mp |
⊢ ¬ e ∈ ( -∞ (,] 0 ) |
| 46 |
|
eldif |
⊢ ( e ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( e ∈ ℂ ∧ ¬ e ∈ ( -∞ (,] 0 ) ) ) |
| 47 |
13 45 46
|
mpbir2an |
⊢ e ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 48 |
|
cxpcncf2 |
⊢ ( e ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 49 |
47 48
|
mp1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 50 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - 𝑥 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - 𝑥 ) |
| 51 |
50
|
negcncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 52 |
28 51
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 53 |
49 52
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 54 |
37 53
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( e ↑𝑐 - 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 55 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 56 |
55
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ℝ ⊆ ℂ ) |
| 57 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑃 ∈ ℕ ) |
| 58 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑀 ∈ ℕ0 ) |
| 59 |
|
etransclem6 |
⊢ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑘 ) ↑ 𝑃 ) ) ) |
| 60 |
5 59
|
eqtri |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑘 ) ↑ 𝑃 ) ) ) |
| 61 |
56 57 58 60 16
|
etransclem13 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 62 |
61
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 63 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
| 64 |
17
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ ℂ ) |
| 65 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ℤ ) |
| 66 |
65
|
zcnd |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ℂ ) |
| 67 |
66
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ℂ ) |
| 68 |
64 67
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 − 𝑘 ) ∈ ℂ ) |
| 69 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
| 70 |
3 69
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
| 71 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 72 |
70 71
|
ifcld |
⊢ ( 𝜑 → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
| 73 |
72
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
| 74 |
68 73
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℂ ) |
| 75 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) |
| 76 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 77 |
76
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 78 |
28 77
|
idcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 80 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 81 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ℂ ) |
| 82 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ℂ ⊆ ℂ ) |
| 83 |
80 81 82
|
constcncfg |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑘 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 84 |
79 83
|
subcncf |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 − 𝑘 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 85 |
|
expcncf |
⊢ ( if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 86 |
72 85
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 88 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝑘 ) → ( 𝑦 ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 89 |
75 84 87 82 88
|
cncfcompt2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 90 |
28 63 74 89
|
fprodcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 91 |
62 90
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 92 |
54 91
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 93 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
| 94 |
6 7 92 93
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
| 95 |
9 11 24 94
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |