| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem19.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem19.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem19.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem19.1 | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 5 |  | etransclem19.J | ⊢ ( 𝜑  →  𝐽  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 6 |  | etransclem19.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 7 |  | etransclem19.7 | ⊢ ( 𝜑  →  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  𝑁 ) | 
						
							| 8 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 9 | 6 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 10 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0red | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 13 | 3 | nnred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 14 | 12 13 | ifcld | ⊢ ( 𝜑  →  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℝ ) | 
						
							| 15 | 11 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑃  −  1 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  =  0 )  →  0  ≤  ( 𝑃  −  1 ) ) | 
						
							| 17 |  | iftrue | ⊢ ( 𝐽  =  0  →  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( 𝐽  =  0  →  ( 𝑃  −  1 )  =  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝐽  =  0 )  →  ( 𝑃  −  1 )  =  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 20 | 16 19 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐽  =  0 )  →  0  ≤  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 21 | 3 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 22 | 21 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝑃 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  0 )  →  0  ≤  𝑃 ) | 
						
							| 24 |  | iffalse | ⊢ ( ¬  𝐽  =  0  →  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  𝑃 ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ¬  𝐽  =  0  →  𝑃  =  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  0 )  →  𝑃  =  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 27 | 23 26 | breqtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  0 )  →  0  ≤  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 28 | 20 27 | pm2.61dan | ⊢ ( 𝜑  →  0  ≤  if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 29 | 8 14 9 28 7 | lelttrd | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 30 | 8 9 29 | ltled | ⊢ ( 𝜑  →  0  ≤  𝑁 ) | 
						
							| 31 |  | elnn0z | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 ) ) | 
						
							| 32 | 6 30 31 | sylanbrc | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 33 | 1 2 3 4 5 32 | etransclem17 | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝐽 ) ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  if ( if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  𝑁 ,  0 ,  ( ( ( ! ‘ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  𝑁 ) ) )  ·  ( ( 𝑥  −  𝐽 ) ↑ ( if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  𝑁 ) ) ) ) ) ) | 
						
							| 34 | 7 | iftrued | ⊢ ( 𝜑  →  if ( if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  𝑁 ,  0 ,  ( ( ( ! ‘ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  𝑁 ) ) )  ·  ( ( 𝑥  −  𝐽 ) ↑ ( if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  𝑁 ) ) ) )  =  0 ) | 
						
							| 35 | 34 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  if ( if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  𝑁 ,  0 ,  ( ( ( ! ‘ if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  𝑁 ) ) )  ·  ( ( 𝑥  −  𝐽 ) ↑ ( if ( 𝐽  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  𝑁 ) ) ) ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 36 | 33 35 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝐽 ) ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) |