Metamath Proof Explorer


Theorem etransclem20

Description: H is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem20.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
etransclem20.x ( 𝜑𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
etransclem20.p ( 𝜑𝑃 ∈ ℕ )
etransclem20.h 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥𝑋 ↦ ( ( 𝑥𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) )
etransclem20.J ( 𝜑𝐽 ∈ ( 0 ... 𝑀 ) )
etransclem20.n ( 𝜑𝑁 ∈ ℕ0 )
Assertion etransclem20 ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝐻𝐽 ) ) ‘ 𝑁 ) : 𝑋 ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 etransclem20.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 etransclem20.x ( 𝜑𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
3 etransclem20.p ( 𝜑𝑃 ∈ ℕ )
4 etransclem20.h 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥𝑋 ↦ ( ( 𝑥𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) )
5 etransclem20.J ( 𝜑𝐽 ∈ ( 0 ... 𝑀 ) )
6 etransclem20.n ( 𝜑𝑁 ∈ ℕ0 )
7 iftrue ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 → if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) = 0 )
8 0cnd ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 → 0 ∈ ℂ )
9 7 8 eqeltrd ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 → if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ∈ ℂ )
10 9 adantl ( ( ( 𝜑𝑥𝑋 ) ∧ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ∈ ℂ )
11 simpr ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 )
12 11 iffalsed ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) = ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) )
13 nnm1nn0 ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 )
14 3 13 syl ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 )
15 3 nnnn0d ( 𝜑𝑃 ∈ ℕ0 )
16 14 15 ifcld ( 𝜑 → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 )
17 16 faccld ( 𝜑 → ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℕ )
18 17 nncnd ( 𝜑 → ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℂ )
19 18 adantr ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℂ )
20 16 nn0zd ( 𝜑 → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℤ )
21 6 nn0zd ( 𝜑𝑁 ∈ ℤ )
22 20 21 zsubcld ( 𝜑 → ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℤ )
23 22 adantr ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℤ )
24 6 nn0red ( 𝜑𝑁 ∈ ℝ )
25 24 adantr ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → 𝑁 ∈ ℝ )
26 16 nn0red ( 𝜑 → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ )
27 26 adantr ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ )
28 simpr ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 )
29 25 27 28 nltled ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → 𝑁 ≤ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) )
30 27 25 subge0d ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( 0 ≤ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ↔ 𝑁 ≤ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) )
31 29 30 mpbird ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → 0 ≤ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) )
32 elnn0z ( ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℕ0 ↔ ( ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) )
33 23 31 32 sylanbrc ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℕ0 )
34 33 faccld ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ∈ ℕ )
35 34 nncnd ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ∈ ℂ )
36 34 nnne0d ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ≠ 0 )
37 19 35 36 divcld ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ∈ ℂ )
38 37 adantlr ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ∈ ℂ )
39 1 2 dvdmsscn ( 𝜑𝑋 ⊆ ℂ )
40 39 sselda ( ( 𝜑𝑥𝑋 ) → 𝑥 ∈ ℂ )
41 elfzelz ( 𝐽 ∈ ( 0 ... 𝑀 ) → 𝐽 ∈ ℤ )
42 41 zcnd ( 𝐽 ∈ ( 0 ... 𝑀 ) → 𝐽 ∈ ℂ )
43 5 42 syl ( 𝜑𝐽 ∈ ℂ )
44 43 adantr ( ( 𝜑𝑥𝑋 ) → 𝐽 ∈ ℂ )
45 40 44 subcld ( ( 𝜑𝑥𝑋 ) → ( 𝑥𝐽 ) ∈ ℂ )
46 45 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( 𝑥𝐽 ) ∈ ℂ )
47 33 adantlr ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℕ0 )
48 46 47 expcld ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ∈ ℂ )
49 38 48 mulcld ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ∈ ℂ )
50 12 49 eqeltrd ( ( ( 𝜑𝑥𝑋 ) ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ∈ ℂ )
51 10 50 pm2.61dan ( ( 𝜑𝑥𝑋 ) → if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ∈ ℂ )
52 eqid ( 𝑥𝑋 ↦ if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ) = ( 𝑥𝑋 ↦ if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) )
53 51 52 fmptd ( 𝜑 → ( 𝑥𝑋 ↦ if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ) : 𝑋 ⟶ ℂ )
54 1 2 3 4 5 6 etransclem17 ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝐻𝐽 ) ) ‘ 𝑁 ) = ( 𝑥𝑋 ↦ if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ) )
55 54 feq1d ( 𝜑 → ( ( ( 𝑆 D𝑛 ( 𝐻𝐽 ) ) ‘ 𝑁 ) : 𝑋 ⟶ ℂ ↔ ( 𝑥𝑋 ↦ if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ) : 𝑋 ⟶ ℂ ) )
56 53 55 mpbird ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝐻𝐽 ) ) ‘ 𝑁 ) : 𝑋 ⟶ ℂ )