| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem23.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 2 |  | etransclem23.l | ⊢ 𝐿  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) | 
						
							| 3 |  | etransclem23.k | ⊢ 𝐾  =  ( 𝐿  /  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 4 |  | etransclem23.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 5 |  | etransclem23.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 6 |  | etransclem23.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 7 |  | etransclem23.lt1 | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  <  1 ) | 
						
							| 8 | 2 | oveq1i | ⊢ ( 𝐿  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 9 | 3 8 | eqtri | ⊢ 𝐾  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 10 | 9 | fveq2i | ⊢ ( abs ‘ 𝐾 )  =  ( abs ‘ ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( abs ‘ 𝐾 )  =  ( abs ‘ ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 12 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 13 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 14 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 16 | 13 15 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℤ ) | 
						
							| 17 | 16 | zcnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 18 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 19 | 18 | recni | ⊢ e  ∈  ℂ | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  e  ∈  ℂ ) | 
						
							| 21 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 22 | 21 | zcnd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℂ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℂ ) | 
						
							| 24 | 20 23 | cxpcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( e ↑𝑐 𝑗 )  ∈  ℂ ) | 
						
							| 25 | 17 24 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ∈  ℂ ) | 
						
							| 26 | 19 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  e  ∈  ℂ ) | 
						
							| 27 |  | elioore | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  𝑥  ∈  ℝ ) | 
						
							| 28 | 27 | recnd | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  𝑥  ∈  ℂ ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 30 | 29 | negcld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  - 𝑥  ∈  ℂ ) | 
						
							| 31 | 26 30 | cxpcld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 32 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 33 | 32 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 34 | 33 4 6 | etransclem8 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 36 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 37 | 35 36 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 38 | 37 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 39 | 31 38 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 40 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 42 |  | reopn | ⊢ ℝ  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 43 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 44 | 42 43 | eleqtri | ⊢ ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 45 | 44 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 46 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 47 | 5 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 49 |  | etransclem6 | ⊢ ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) )  =  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑃  −  1 ) )  ·  ∏ ℎ  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  ℎ ) ↑ 𝑃 ) ) ) | 
						
							| 50 |  | etransclem6 | ⊢ ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑃  −  1 ) )  ·  ∏ ℎ  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  ℎ ) ↑ 𝑃 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 51 | 6 49 50 | 3eqtri | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 52 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ∈  ℝ ) | 
						
							| 53 | 21 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 55 | 41 45 46 48 51 52 54 | etransclem18 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝐿1 ) | 
						
							| 56 | 39 55 | itgcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥  ∈  ℂ ) | 
						
							| 57 | 25 56 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  ∈  ℂ ) | 
						
							| 58 | 12 57 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  ∈  ℂ ) | 
						
							| 59 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 60 | 4 59 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 61 | 60 | faccld | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ ) | 
						
							| 62 | 61 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 63 | 61 | nnne0d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0 ) | 
						
							| 64 | 58 62 63 | absdivd | ⊢ ( 𝜑  →  ( abs ‘ ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  =  ( ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  /  ( abs ‘ ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 65 | 61 | nnred | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℝ ) | 
						
							| 66 | 61 | nnnn0d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ0 ) | 
						
							| 67 | 66 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 68 | 65 67 | absidd | ⊢ ( 𝜑  →  ( abs ‘ ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( 𝜑  →  ( ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  /  ( abs ‘ ( ! ‘ ( 𝑃  −  1 ) ) ) )  =  ( ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 70 | 11 64 69 | 3eqtrd | ⊢ ( 𝜑  →  ( abs ‘ 𝐾 )  =  ( ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 71 | 2 58 | eqeltrid | ⊢ ( 𝜑  →  𝐿  ∈  ℂ ) | 
						
							| 72 | 71 62 63 | divcld | ⊢ ( 𝜑  →  ( 𝐿  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℂ ) | 
						
							| 73 | 3 72 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 74 | 73 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝐾 )  ∈  ℝ ) | 
						
							| 75 | 70 74 | eqeltrrd | ⊢ ( 𝜑  →  ( ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℝ ) | 
						
							| 76 | 5 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 77 | 4 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 78 | 76 77 | reexpcld | ⊢ ( 𝜑  →  ( 𝑀 ↑ 𝑃 )  ∈  ℝ ) | 
						
							| 79 |  | peano2nn0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 80 | 47 79 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 81 | 78 80 | reexpcld | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ∈  ℝ ) | 
						
							| 82 | 81 | recnd | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ∈  ℂ ) | 
						
							| 83 | 5 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 84 | 82 83 | mulcomd | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 )  =  ( 𝑀  ·  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) ) | 
						
							| 85 | 4 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 86 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 87 | 85 86 | npcand | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  +  1 )  =  𝑃 ) | 
						
							| 88 | 87 | eqcomd | ⊢ ( 𝜑  →  𝑃  =  ( ( 𝑃  −  1 )  +  1 ) ) | 
						
							| 89 | 88 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑃 )  =  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( ( 𝑃  −  1 )  +  1 ) ) ) | 
						
							| 90 | 80 | nn0cnd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℂ ) | 
						
							| 91 | 90 85 | mulcomd | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 )  ·  𝑃 )  =  ( 𝑃  ·  ( 𝑀  +  1 ) ) ) | 
						
							| 92 | 91 | oveq2d | ⊢ ( 𝜑  →  ( 𝑀 ↑ ( ( 𝑀  +  1 )  ·  𝑃 ) )  =  ( 𝑀 ↑ ( 𝑃  ·  ( 𝑀  +  1 ) ) ) ) | 
						
							| 93 | 83 77 80 | expmuld | ⊢ ( 𝜑  →  ( 𝑀 ↑ ( ( 𝑀  +  1 )  ·  𝑃 ) )  =  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑃 ) ) | 
						
							| 94 | 83 80 77 | expmuld | ⊢ ( 𝜑  →  ( 𝑀 ↑ ( 𝑃  ·  ( 𝑀  +  1 ) ) )  =  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 95 | 92 93 94 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑃 )  =  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 96 | 76 80 | reexpcld | ⊢ ( 𝜑  →  ( 𝑀 ↑ ( 𝑀  +  1 ) )  ∈  ℝ ) | 
						
							| 97 | 96 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ↑ ( 𝑀  +  1 ) )  ∈  ℂ ) | 
						
							| 98 | 97 60 | expp1d | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( ( 𝑃  −  1 )  +  1 ) )  =  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) ) | 
						
							| 99 | 89 95 98 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  =  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) ) | 
						
							| 100 | 99 | oveq2d | ⊢ ( 𝜑  →  ( 𝑀  ·  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) )  =  ( 𝑀  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 101 | 97 60 | expcld | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 102 | 83 101 97 | mul12d | ⊢ ( 𝜑  →  ( 𝑀  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  =  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 103 | 83 97 | mulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ∈  ℂ ) | 
						
							| 104 | 101 103 | mulcomd | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  =  ( ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) | 
						
							| 105 | 102 104 | eqtrd | ⊢ ( 𝜑  →  ( 𝑀  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  =  ( ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) | 
						
							| 106 | 84 100 105 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 )  =  ( ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 )  =  ( ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) | 
						
							| 108 | 107 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  =  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 109 | 25 | abscld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 110 | 109 | recnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ∈  ℂ ) | 
						
							| 111 | 103 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ∈  ℂ ) | 
						
							| 112 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 113 | 110 111 112 | mulassd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) )  =  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 114 | 108 113 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  =  ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) | 
						
							| 115 | 114 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) | 
						
							| 116 | 110 111 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 117 | 12 101 116 | fsummulc1 | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) | 
						
							| 118 | 115 117 | eqtr4d | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) ) ) | 
						
							| 119 | 118 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 120 | 12 116 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 121 | 120 101 62 63 | divassd | ⊢ ( 𝜑  →  ( ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 122 | 119 121 | eqtrd | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 123 | 81 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ∈  ℝ ) | 
						
							| 124 | 76 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 125 | 123 124 | remulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 )  ∈  ℝ ) | 
						
							| 126 | 109 125 | remulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  ∈  ℝ ) | 
						
							| 127 | 12 126 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  ∈  ℝ ) | 
						
							| 128 | 127 61 | nndivred | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℝ ) | 
						
							| 129 | 122 128 | eqeltrrd | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  ∈  ℝ ) | 
						
							| 130 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 131 | 58 | abscld | ⊢ ( 𝜑  →  ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  ∈  ℝ ) | 
						
							| 132 | 61 | nnrpd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℝ+ ) | 
						
							| 133 | 57 | abscld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  ∈  ℝ ) | 
						
							| 134 | 12 133 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  ∈  ℝ ) | 
						
							| 135 | 12 57 | fsumabs | ⊢ ( 𝜑  →  ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  ≤  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) ) ) | 
						
							| 136 | 81 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ∈  ℝ ) | 
						
							| 137 |  | ioombl | ⊢ ( 0 (,) 𝑗 )  ∈  dom  vol | 
						
							| 138 | 137 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 0 (,) 𝑗 )  ∈  dom  vol ) | 
						
							| 139 |  | 0red | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  0  ∈  ℝ ) | 
						
							| 140 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  0  ≤  𝑗 ) | 
						
							| 141 |  | volioo | ⊢ ( ( 0  ∈  ℝ  ∧  𝑗  ∈  ℝ  ∧  0  ≤  𝑗 )  →  ( vol ‘ ( 0 (,) 𝑗 ) )  =  ( 𝑗  −  0 ) ) | 
						
							| 142 | 139 53 140 141 | syl3anc | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( vol ‘ ( 0 (,) 𝑗 ) )  =  ( 𝑗  −  0 ) ) | 
						
							| 143 | 53 139 | resubcld | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑗  −  0 )  ∈  ℝ ) | 
						
							| 144 | 142 143 | eqeltrd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( vol ‘ ( 0 (,) 𝑗 ) )  ∈  ℝ ) | 
						
							| 145 | 144 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( vol ‘ ( 0 (,) 𝑗 ) )  ∈  ℝ ) | 
						
							| 146 | 82 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ∈  ℂ ) | 
						
							| 147 |  | iblconstmpt | ⊢ ( ( ( 0 (,) 𝑗 )  ∈  dom  vol  ∧  ( vol ‘ ( 0 (,) 𝑗 ) )  ∈  ℝ  ∧  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ∈  ℂ )  →  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) )  ∈  𝐿1 ) | 
						
							| 148 | 138 145 146 147 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) )  ∈  𝐿1 ) | 
						
							| 149 | 136 148 | itgrecl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥  ∈  ℝ ) | 
						
							| 150 | 109 149 | remulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥 )  ∈  ℝ ) | 
						
							| 151 | 12 150 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥 )  ∈  ℝ ) | 
						
							| 152 | 25 56 | absmuld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  =  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) ) ) | 
						
							| 153 | 56 | abscld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  ∈  ℝ ) | 
						
							| 154 | 25 | absge0d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) ) ) | 
						
							| 155 | 39 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 156 | 39 55 | iblabs | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 0 (,) 𝑗 )  ↦  ( abs ‘ ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) ) )  ∈  𝐿1 ) | 
						
							| 157 | 155 156 | itgrecl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ∫ ( 0 (,) 𝑗 ) ( abs ‘ ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  d 𝑥  ∈  ℝ ) | 
						
							| 158 | 39 55 | itgabs | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  ≤  ∫ ( 0 (,) 𝑗 ) ( abs ‘ ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  d 𝑥 ) | 
						
							| 159 | 31 38 | absmuld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  =  ( ( abs ‘ ( e ↑𝑐 - 𝑥 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 160 | 31 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( e ↑𝑐 - 𝑥 ) )  ∈  ℝ ) | 
						
							| 161 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  1  ∈  ℝ ) | 
						
							| 162 | 38 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 163 | 31 | absge0d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  0  ≤  ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) ) | 
						
							| 164 | 38 | absge0d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  0  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 165 | 18 | a1i | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  e  ∈  ℝ ) | 
						
							| 166 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 167 |  | epos | ⊢ 0  <  e | 
						
							| 168 | 166 18 167 | ltleii | ⊢ 0  ≤  e | 
						
							| 169 | 168 | a1i | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  0  ≤  e ) | 
						
							| 170 | 27 | renegcld | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  - 𝑥  ∈  ℝ ) | 
						
							| 171 | 165 169 170 | recxpcld | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  ( e ↑𝑐 - 𝑥 )  ∈  ℝ ) | 
						
							| 172 | 165 169 170 | cxpge0d | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  0  ≤  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 173 | 171 172 | absidd | ⊢ ( 𝑥  ∈  ( 0 (,) 𝑗 )  →  ( abs ‘ ( e ↑𝑐 - 𝑥 ) )  =  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 174 | 173 | adantl | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( e ↑𝑐 - 𝑥 ) )  =  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 175 | 171 | adantl | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( e ↑𝑐 - 𝑥 )  ∈  ℝ ) | 
						
							| 176 |  | 1red | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  1  ∈  ℝ ) | 
						
							| 177 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 178 | 177 | a1i | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  0  ∈  ℝ* ) | 
						
							| 179 | 53 | rexrd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℝ* ) | 
						
							| 180 | 179 | adantr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑗  ∈  ℝ* ) | 
						
							| 181 |  | simpr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ∈  ( 0 (,) 𝑗 ) ) | 
						
							| 182 |  | ioogtlb | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑗  ∈  ℝ*  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  0  <  𝑥 ) | 
						
							| 183 | 178 180 181 182 | syl3anc | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  0  <  𝑥 ) | 
						
							| 184 | 27 | adantl | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 185 | 184 | lt0neg2d | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( 0  <  𝑥  ↔  - 𝑥  <  0 ) ) | 
						
							| 186 | 183 185 | mpbid | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  - 𝑥  <  0 ) | 
						
							| 187 | 18 | a1i | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  e  ∈  ℝ ) | 
						
							| 188 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 189 |  | egt2lt3 | ⊢ ( 2  <  e  ∧  e  <  3 ) | 
						
							| 190 | 189 | simpli | ⊢ 2  <  e | 
						
							| 191 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 192 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 193 | 191 192 18 | lttri | ⊢ ( ( 1  <  2  ∧  2  <  e )  →  1  <  e ) | 
						
							| 194 | 188 190 193 | mp2an | ⊢ 1  <  e | 
						
							| 195 | 194 | a1i | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  1  <  e ) | 
						
							| 196 | 170 | adantl | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  - 𝑥  ∈  ℝ ) | 
						
							| 197 |  | 0red | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  0  ∈  ℝ ) | 
						
							| 198 | 187 195 196 197 | cxpltd | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( - 𝑥  <  0  ↔  ( e ↑𝑐 - 𝑥 )  <  ( e ↑𝑐 0 ) ) ) | 
						
							| 199 | 186 198 | mpbid | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( e ↑𝑐 - 𝑥 )  <  ( e ↑𝑐 0 ) ) | 
						
							| 200 |  | cxp0 | ⊢ ( e  ∈  ℂ  →  ( e ↑𝑐 0 )  =  1 ) | 
						
							| 201 | 19 200 | mp1i | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( e ↑𝑐 0 )  =  1 ) | 
						
							| 202 | 199 201 | breqtrd | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( e ↑𝑐 - 𝑥 )  <  1 ) | 
						
							| 203 | 175 176 202 | ltled | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( e ↑𝑐 - 𝑥 )  ≤  1 ) | 
						
							| 204 | 174 203 | eqbrtrd | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( e ↑𝑐 - 𝑥 ) )  ≤  1 ) | 
						
							| 205 | 204 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( e ↑𝑐 - 𝑥 ) )  ≤  1 ) | 
						
							| 206 | 32 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 207 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 208 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 209 | 6 49 | eqtri | ⊢ 𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑃  −  1 ) )  ·  ∏ ℎ  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  ℎ ) ↑ 𝑃 ) ) ) | 
						
							| 210 | 27 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 211 | 206 207 208 209 210 | etransclem13 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 212 | 211 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( abs ‘ ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 213 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 214 | 27 | adantr | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ℕ0 )  →  𝑥  ∈  ℝ ) | 
						
							| 215 |  | nn0re | ⊢ ( ℎ  ∈  ℕ0  →  ℎ  ∈  ℝ ) | 
						
							| 216 | 215 | adantl | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ℕ0 )  →  ℎ  ∈  ℝ ) | 
						
							| 217 | 214 216 | resubcld | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ℕ0 )  →  ( 𝑥  −  ℎ )  ∈  ℝ ) | 
						
							| 218 | 217 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ℕ0 )  →  ( 𝑥  −  ℎ )  ∈  ℝ ) | 
						
							| 219 | 60 77 | ifcld | ⊢ ( 𝜑  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 220 | 219 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ℕ0 )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 221 | 218 220 | reexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ℕ0 )  →  ( ( 𝑥  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  ℝ ) | 
						
							| 222 | 221 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ℕ0 )  →  ( ( 𝑥  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  ℂ ) | 
						
							| 223 | 213 208 222 | fprodabs | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( abs ‘ ( ( 𝑥  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 224 |  | elfznn0 | ⊢ ( ℎ  ∈  ( 0 ... 𝑀 )  →  ℎ  ∈  ℕ0 ) | 
						
							| 225 | 28 | adantr | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ℕ0 )  →  𝑥  ∈  ℂ ) | 
						
							| 226 |  | nn0cn | ⊢ ( ℎ  ∈  ℕ0  →  ℎ  ∈  ℂ ) | 
						
							| 227 | 226 | adantl | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ℕ0 )  →  ℎ  ∈  ℂ ) | 
						
							| 228 | 225 227 | subcld | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ℕ0 )  →  ( 𝑥  −  ℎ )  ∈  ℂ ) | 
						
							| 229 | 228 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ℕ0 )  →  ( 𝑥  −  ℎ )  ∈  ℂ ) | 
						
							| 230 | 224 229 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  −  ℎ )  ∈  ℂ ) | 
						
							| 231 | 219 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 232 | 230 231 | absexpd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( ( 𝑥  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 233 | 232 | prodeq2dv | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( abs ‘ ( ( 𝑥  −  ℎ ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 234 | 212 223 233 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  =  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 235 |  | nfv | ⊢ Ⅎ ℎ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) ) | 
						
							| 236 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 237 | 224 228 | sylan2 | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  −  ℎ )  ∈  ℂ ) | 
						
							| 238 | 237 | abscld | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( 𝑥  −  ℎ ) )  ∈  ℝ ) | 
						
							| 239 | 238 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( 𝑥  −  ℎ ) )  ∈  ℝ ) | 
						
							| 240 | 239 231 | reexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  ℝ ) | 
						
							| 241 | 237 | absge0d | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  ( abs ‘ ( 𝑥  −  ℎ ) ) ) | 
						
							| 242 | 241 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  ( abs ‘ ( 𝑥  −  ℎ ) ) ) | 
						
							| 243 | 239 231 242 | expge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 244 | 78 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑀 ↑ 𝑃 )  ∈  ℝ ) | 
						
							| 245 | 76 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 246 | 245 231 | reexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑀 ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  ℝ ) | 
						
							| 247 | 224 218 | sylan2 | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  −  ℎ )  ∈  ℝ ) | 
						
							| 248 | 28 | adantr | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 249 | 224 227 | sylan2 | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ℎ  ∈  ℂ ) | 
						
							| 250 | 248 249 | negsubdi2d | ⊢ ( ( 𝑥  ∈  ( 0 (,) 𝑗 )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  - ( 𝑥  −  ℎ )  =  ( ℎ  −  𝑥 ) ) | 
						
							| 251 | 250 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  - ( 𝑥  −  ℎ )  =  ( ℎ  −  𝑥 ) ) | 
						
							| 252 | 224 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ℎ  ∈  ℕ0 ) | 
						
							| 253 | 252 | nn0red | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ℎ  ∈  ℝ ) | 
						
							| 254 |  | 0red | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  0  ∈  ℝ ) | 
						
							| 255 | 210 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 256 |  | elfzle2 | ⊢ ( ℎ  ∈  ( 0 ... 𝑀 )  →  ℎ  ≤  𝑀 ) | 
						
							| 257 | 256 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ℎ  ≤  𝑀 ) | 
						
							| 258 | 197 184 183 | ltled | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  0  ≤  𝑥 ) | 
						
							| 259 | 258 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  0  ≤  𝑥 ) | 
						
							| 260 | 259 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  𝑥 ) | 
						
							| 261 | 253 254 245 255 257 260 | le2subd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( ℎ  −  𝑥 )  ≤  ( 𝑀  −  0 ) ) | 
						
							| 262 | 83 | subid1d | ⊢ ( 𝜑  →  ( 𝑀  −  0 )  =  𝑀 ) | 
						
							| 263 | 262 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑀  −  0 )  =  𝑀 ) | 
						
							| 264 | 261 263 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( ℎ  −  𝑥 )  ≤  𝑀 ) | 
						
							| 265 | 251 264 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  - ( 𝑥  −  ℎ )  ≤  𝑀 ) | 
						
							| 266 | 247 245 265 | lenegcon1d | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  - 𝑀  ≤  ( 𝑥  −  ℎ ) ) | 
						
							| 267 |  | elfzel2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 268 | 267 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 269 | 268 | adantr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 270 | 53 | adantr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 271 |  | iooltub | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑗  ∈  ℝ*  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  <  𝑗 ) | 
						
							| 272 | 178 180 181 271 | syl3anc | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  <  𝑗 ) | 
						
							| 273 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ≤  𝑀 ) | 
						
							| 274 | 273 | adantr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑗  ≤  𝑀 ) | 
						
							| 275 | 184 270 269 272 274 | ltletrd | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  <  𝑀 ) | 
						
							| 276 | 184 269 275 | ltled | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ≤  𝑀 ) | 
						
							| 277 | 276 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  𝑥  ≤  𝑀 ) | 
						
							| 278 | 277 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ≤  𝑀 ) | 
						
							| 279 | 252 | nn0ge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  ℎ ) | 
						
							| 280 | 255 254 245 253 278 279 | le2subd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  −  ℎ )  ≤  ( 𝑀  −  0 ) ) | 
						
							| 281 | 280 263 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  −  ℎ )  ≤  𝑀 ) | 
						
							| 282 | 247 245 | absled | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( 𝑥  −  ℎ ) )  ≤  𝑀  ↔  ( - 𝑀  ≤  ( 𝑥  −  ℎ )  ∧  ( 𝑥  −  ℎ )  ≤  𝑀 ) ) ) | 
						
							| 283 | 266 281 282 | mpbir2and | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( 𝑥  −  ℎ ) )  ≤  𝑀 ) | 
						
							| 284 |  | leexp1a | ⊢ ( ( ( ( abs ‘ ( 𝑥  −  ℎ ) )  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 )  ∧  ( 0  ≤  ( abs ‘ ( 𝑥  −  ℎ ) )  ∧  ( abs ‘ ( 𝑥  −  ℎ ) )  ≤  𝑀 ) )  →  ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ≤  ( 𝑀 ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 285 | 239 245 231 242 283 284 | syl32anc | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ≤  ( 𝑀 ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 286 | 5 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑀 ) | 
						
							| 287 | 286 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  1  ≤  𝑀 ) | 
						
							| 288 | 219 | nn0zd | ⊢ ( 𝜑  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℤ ) | 
						
							| 289 | 77 | nn0zd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 290 |  | iftrue | ⊢ ( ℎ  =  0  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 291 | 290 | adantl | ⊢ ( ( 𝜑  ∧  ℎ  =  0 )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 292 | 4 | nnred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 293 | 292 | lem1d | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ≤  𝑃 ) | 
						
							| 294 | 293 | adantr | ⊢ ( ( 𝜑  ∧  ℎ  =  0 )  →  ( 𝑃  −  1 )  ≤  𝑃 ) | 
						
							| 295 | 291 294 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ℎ  =  0 )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ≤  𝑃 ) | 
						
							| 296 |  | iffalse | ⊢ ( ¬  ℎ  =  0  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  𝑃 ) | 
						
							| 297 | 296 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ℎ  =  0 )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  𝑃 ) | 
						
							| 298 | 292 | leidd | ⊢ ( 𝜑  →  𝑃  ≤  𝑃 ) | 
						
							| 299 | 298 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ℎ  =  0 )  →  𝑃  ≤  𝑃 ) | 
						
							| 300 | 297 299 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ¬  ℎ  =  0 )  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ≤  𝑃 ) | 
						
							| 301 | 295 300 | pm2.61dan | ⊢ ( 𝜑  →  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ≤  𝑃 ) | 
						
							| 302 |  | eluz2 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ↔  ( if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ≤  𝑃 ) ) | 
						
							| 303 | 288 289 301 302 | syl3anbrc | ⊢ ( 𝜑  →  𝑃  ∈  ( ℤ≥ ‘ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 304 | 303 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ( ℤ≥ ‘ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 305 | 245 287 304 | leexp2ad | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑀 ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ≤  ( 𝑀 ↑ 𝑃 ) ) | 
						
							| 306 | 240 246 244 285 305 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  ∧  ℎ  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ≤  ( 𝑀 ↑ 𝑃 ) ) | 
						
							| 307 | 235 236 240 243 244 306 | fprodle | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ≤  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 ) ) | 
						
							| 308 | 78 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ↑ 𝑃 )  ∈  ℂ ) | 
						
							| 309 |  | fprodconst | ⊢ ( ( ( 0 ... 𝑀 )  ∈  Fin  ∧  ( 𝑀 ↑ 𝑃 )  ∈  ℂ )  →  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 )  =  ( ( 𝑀 ↑ 𝑃 ) ↑ ( ♯ ‘ ( 0 ... 𝑀 ) ) ) ) | 
						
							| 310 | 12 308 309 | syl2anc | ⊢ ( 𝜑  →  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 )  =  ( ( 𝑀 ↑ 𝑃 ) ↑ ( ♯ ‘ ( 0 ... 𝑀 ) ) ) ) | 
						
							| 311 |  | hashfz0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( ♯ ‘ ( 0 ... 𝑀 ) )  =  ( 𝑀  +  1 ) ) | 
						
							| 312 | 47 311 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... 𝑀 ) )  =  ( 𝑀  +  1 ) ) | 
						
							| 313 | 312 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 𝑃 ) ↑ ( ♯ ‘ ( 0 ... 𝑀 ) ) )  =  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 314 | 310 313 | eqtrd | ⊢ ( 𝜑  →  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 )  =  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 315 | 314 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 )  =  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 316 | 307 315 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ∏ ℎ  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( 𝑥  −  ℎ ) ) ↑ if ( ℎ  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ≤  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 317 | 234 316 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 318 | 160 161 162 136 163 164 205 317 | lemul12ad | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( abs ‘ ( e ↑𝑐 - 𝑥 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 1  ·  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) ) | 
						
							| 319 | 82 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) )  =  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 320 | 319 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( 1  ·  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) )  =  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 321 | 318 320 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( ( abs ‘ ( e ↑𝑐 - 𝑥 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 322 | 159 321 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  ( 0 (,) 𝑗 ) )  →  ( abs ‘ ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 323 | 156 148 155 136 322 | itgle | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ∫ ( 0 (,) 𝑗 ) ( abs ‘ ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  d 𝑥  ≤  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥 ) | 
						
							| 324 | 153 157 149 158 323 | letrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 )  ≤  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥 ) | 
						
							| 325 | 153 149 109 154 324 | lemul2ad | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  ≤  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥 ) ) | 
						
							| 326 | 152 325 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  ≤  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥 ) ) | 
						
							| 327 | 12 133 150 326 | fsumle | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  ≤  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥 ) ) | 
						
							| 328 |  | itgconst | ⊢ ( ( ( 0 (,) 𝑗 )  ∈  dom  vol  ∧  ( vol ‘ ( 0 (,) 𝑗 ) )  ∈  ℝ  ∧  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ∈  ℂ )  →  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥  =  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  ( vol ‘ ( 0 (,) 𝑗 ) ) ) ) | 
						
							| 329 | 138 145 146 328 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥  =  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  ( vol ‘ ( 0 (,) 𝑗 ) ) ) ) | 
						
							| 330 | 47 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝑀 ) | 
						
							| 331 | 76 77 330 | expge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑀 ↑ 𝑃 ) ) | 
						
							| 332 | 78 80 331 | expge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 333 | 332 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) ) ) | 
						
							| 334 | 22 | subid1d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑗  −  0 )  =  𝑗 ) | 
						
							| 335 | 142 334 | eqtrd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( vol ‘ ( 0 (,) 𝑗 ) )  =  𝑗 ) | 
						
							| 336 | 335 273 | eqbrtrd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( vol ‘ ( 0 (,) 𝑗 ) )  ≤  𝑀 ) | 
						
							| 337 | 336 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( vol ‘ ( 0 (,) 𝑗 ) )  ≤  𝑀 ) | 
						
							| 338 | 145 124 123 333 337 | lemul2ad | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  ( vol ‘ ( 0 (,) 𝑗 ) ) )  ≤  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) ) | 
						
							| 339 | 329 338 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥  ≤  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) ) | 
						
							| 340 | 149 125 109 154 339 | lemul2ad | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥 )  ≤  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) ) ) | 
						
							| 341 | 12 150 126 340 | fsumle | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  d 𝑥 )  ≤  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) ) ) | 
						
							| 342 | 134 151 127 327 341 | letrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  ≤  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) ) ) | 
						
							| 343 | 131 134 127 135 342 | letrd | ⊢ ( 𝜑  →  ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  ≤  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) ) ) | 
						
							| 344 | 131 127 132 343 | lediv1dd | ⊢ ( 𝜑  →  ( ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ≤  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀  +  1 ) )  ·  𝑀 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 345 | 344 122 | breqtrd | ⊢ ( 𝜑  →  ( ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ≤  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑃  −  1 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 346 | 75 129 130 345 7 | lelttrd | ⊢ ( 𝜑  →  ( ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  d 𝑥 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  <  1 ) | 
						
							| 347 | 70 346 | eqbrtrd | ⊢ ( 𝜑  →  ( abs ‘ 𝐾 )  <  1 ) |