Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem26.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
2 |
|
etransclem26.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
3 |
|
etransclem26.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
4 |
|
etransclem26.jz |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
5 |
|
etransclem26.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
6 |
|
etransclem26.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 ‘ 𝑁 ) ) |
7 |
5 3
|
etransclem12 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
8 |
6 7
|
eleqtrd |
⊢ ( 𝜑 → 𝐷 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
9 |
|
fveq1 |
⊢ ( 𝑐 = 𝐷 → ( 𝑐 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑗 ) ) |
10 |
9
|
sumeq2sdv |
⊢ ( 𝑐 = 𝐷 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑐 = 𝐷 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 ↔ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = 𝑁 ) ) |
12 |
11
|
elrab |
⊢ ( 𝐷 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ↔ ( 𝐷 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∧ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = 𝑁 ) ) |
13 |
8 12
|
sylib |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∧ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = 𝑁 ) ) |
14 |
13
|
simprd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = 𝑁 ) |
15 |
14
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) = ( ! ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝜑 → ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( ! ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐷 |
19 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
20 |
|
nn0ex |
⊢ ℕ0 ∈ V |
21 |
|
fzssnn0 |
⊢ ( 0 ... 𝑁 ) ⊆ ℕ0 |
22 |
|
mapss |
⊢ ( ( ℕ0 ∈ V ∧ ( 0 ... 𝑁 ) ⊆ ℕ0 ) → ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ⊆ ( ℕ0 ↑m ( 0 ... 𝑀 ) ) ) |
23 |
20 21 22
|
mp2an |
⊢ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ⊆ ( ℕ0 ↑m ( 0 ... 𝑀 ) ) |
24 |
13
|
simpld |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ) |
25 |
23 24
|
sselid |
⊢ ( 𝜑 → 𝐷 ∈ ( ℕ0 ↑m ( 0 ... 𝑀 ) ) ) |
26 |
18 19 25
|
mccl |
⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ℕ ) |
27 |
17 26
|
eqeltrd |
⊢ ( 𝜑 → ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ℕ ) |
28 |
27
|
nnzd |
⊢ ( 𝜑 → ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) ∈ ℤ ) |
29 |
|
elmapi |
⊢ ( 𝐷 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) → 𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
30 |
24 29
|
syl |
⊢ ( 𝜑 → 𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
31 |
1 2 30 4
|
etransclem10 |
⊢ ( 𝜑 → if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 𝐽 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) ∈ ℤ ) |
32 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
34 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
35 |
|
0z |
⊢ 0 ∈ ℤ |
36 |
|
fzp1ss |
⊢ ( 0 ∈ ℤ → ( ( 0 + 1 ) ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) ) |
37 |
35 36
|
ax-mp |
⊢ ( ( 0 + 1 ) ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
38 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
39 |
38
|
oveq1i |
⊢ ( 1 ... 𝑀 ) = ( ( 0 + 1 ) ... 𝑀 ) |
40 |
39
|
eleq2i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) ↔ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ) |
41 |
40
|
biimpi |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ) |
42 |
37 41
|
sselid |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
44 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐽 ∈ ℤ ) |
45 |
33 34 43 44
|
etransclem3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
46 |
32 45
|
fprodzcl |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
47 |
31 46
|
zmulcld |
⊢ ( 𝜑 → ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 𝐽 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ∈ ℤ ) |
48 |
28 47
|
zmulcld |
⊢ ( 𝜑 → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 𝐽 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ∈ ℤ ) |