Metamath Proof Explorer


Theorem etransclem26

Description: Every term in the sum of the N -th derivative of F applied to J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem26.p ( 𝜑𝑃 ∈ ℕ )
etransclem26.m ( 𝜑𝑀 ∈ ℕ0 )
etransclem26.n ( 𝜑𝑁 ∈ ℕ0 )
etransclem26.jz ( 𝜑𝐽 ∈ ℤ )
etransclem26.c 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐𝑗 ) = 𝑛 } )
etransclem26.d ( 𝜑𝐷 ∈ ( 𝐶𝑁 ) )
Assertion etransclem26 ( 𝜑 → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 𝐽 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) · ( ( 𝐽𝑗 ) ↑ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) ) ) ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 etransclem26.p ( 𝜑𝑃 ∈ ℕ )
2 etransclem26.m ( 𝜑𝑀 ∈ ℕ0 )
3 etransclem26.n ( 𝜑𝑁 ∈ ℕ0 )
4 etransclem26.jz ( 𝜑𝐽 ∈ ℤ )
5 etransclem26.c 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐𝑗 ) = 𝑛 } )
6 etransclem26.d ( 𝜑𝐷 ∈ ( 𝐶𝑁 ) )
7 5 3 etransclem12 ( 𝜑 → ( 𝐶𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐𝑗 ) = 𝑁 } )
8 6 7 eleqtrd ( 𝜑𝐷 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐𝑗 ) = 𝑁 } )
9 fveq1 ( 𝑐 = 𝐷 → ( 𝑐𝑗 ) = ( 𝐷𝑗 ) )
10 9 sumeq2sdv ( 𝑐 = 𝐷 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐𝑗 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷𝑗 ) )
11 10 eqeq1d ( 𝑐 = 𝐷 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐𝑗 ) = 𝑁 ↔ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷𝑗 ) = 𝑁 ) )
12 11 elrab ( 𝐷 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐𝑗 ) = 𝑁 } ↔ ( 𝐷 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∧ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷𝑗 ) = 𝑁 ) )
13 8 12 sylib ( 𝜑 → ( 𝐷 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∧ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷𝑗 ) = 𝑁 ) )
14 13 simprd ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷𝑗 ) = 𝑁 )
15 14 eqcomd ( 𝜑𝑁 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷𝑗 ) )
16 15 fveq2d ( 𝜑 → ( ! ‘ 𝑁 ) = ( ! ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷𝑗 ) ) )
17 16 oveq1d ( 𝜑 → ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷𝑗 ) ) ) = ( ( ! ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷𝑗 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷𝑗 ) ) ) )
18 nfcv 𝑗 𝐷
19 fzfid ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin )
20 nn0ex 0 ∈ V
21 fzssnn0 ( 0 ... 𝑁 ) ⊆ ℕ0
22 mapss ( ( ℕ0 ∈ V ∧ ( 0 ... 𝑁 ) ⊆ ℕ0 ) → ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ⊆ ( ℕ0m ( 0 ... 𝑀 ) ) )
23 20 21 22 mp2an ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ⊆ ( ℕ0m ( 0 ... 𝑀 ) )
24 13 simpld ( 𝜑𝐷 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) )
25 23 24 sselid ( 𝜑𝐷 ∈ ( ℕ0m ( 0 ... 𝑀 ) ) )
26 18 19 25 mccl ( 𝜑 → ( ( ! ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷𝑗 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷𝑗 ) ) ) ∈ ℕ )
27 17 26 eqeltrd ( 𝜑 → ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷𝑗 ) ) ) ∈ ℕ )
28 27 nnzd ( 𝜑 → ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷𝑗 ) ) ) ∈ ℤ )
29 elmapi ( 𝐷 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) → 𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) )
30 24 29 syl ( 𝜑𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) )
31 1 2 30 4 etransclem10 ( 𝜑 → if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 𝐽 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) ∈ ℤ )
32 fzfid ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin )
33 1 adantr ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑃 ∈ ℕ )
34 30 adantr ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) )
35 0z 0 ∈ ℤ
36 fzp1ss ( 0 ∈ ℤ → ( ( 0 + 1 ) ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) )
37 35 36 ax-mp ( ( 0 + 1 ) ... 𝑀 ) ⊆ ( 0 ... 𝑀 )
38 1e0p1 1 = ( 0 + 1 )
39 38 oveq1i ( 1 ... 𝑀 ) = ( ( 0 + 1 ) ... 𝑀 )
40 39 eleq2i ( 𝑗 ∈ ( 1 ... 𝑀 ) ↔ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) )
41 40 biimpi ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) )
42 37 41 sselid ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) )
43 42 adantl ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) )
44 4 adantr ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐽 ∈ ℤ )
45 33 34 43 44 etransclem3 ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → if ( 𝑃 < ( 𝐷𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) · ( ( 𝐽𝑗 ) ↑ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) ) ∈ ℤ )
46 32 45 fprodzcl ( 𝜑 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) · ( ( 𝐽𝑗 ) ↑ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) ) ∈ ℤ )
47 31 46 zmulcld ( 𝜑 → ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 𝐽 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) · ( ( 𝐽𝑗 ) ↑ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) ) ) ∈ ℤ )
48 28 47 zmulcld ( 𝜑 → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 𝐽 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) · ( ( 𝐽𝑗 ) ↑ ( 𝑃 − ( 𝐷𝑗 ) ) ) ) ) ) ) ∈ ℤ )