Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem27.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
etransclem27.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
3 |
|
etransclem27.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
4 |
|
etransclem27.h |
⊢ 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
5 |
|
etransclem27.cfi |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
6 |
|
etransclem27.cf |
⊢ ( 𝜑 → 𝐶 : dom 𝐶 ⟶ ( ℕ0 ↑m ( 0 ... 𝑀 ) ) ) |
7 |
|
etransclem27.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑙 ∈ dom 𝐶 ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝑥 ) ) |
8 |
|
etransclem27.jx |
⊢ ( 𝜑 → 𝐽 ∈ 𝑋 ) |
9 |
|
etransclem27.jz |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝐽 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ) |
11 |
10
|
prodeq2ad |
⊢ ( 𝑥 = 𝐽 → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝑥 ) = ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ) |
12 |
11
|
sumeq2sdv |
⊢ ( 𝑥 = 𝐽 → Σ 𝑙 ∈ dom 𝐶 ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝑥 ) = Σ 𝑙 ∈ dom 𝐶 ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ) |
13 |
|
dmfi |
⊢ ( 𝐶 ∈ Fin → dom 𝐶 ∈ Fin ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → dom 𝐶 ∈ Fin ) |
15 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) → ( 0 ... 𝑀 ) ∈ Fin ) |
16 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
17 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
18 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
19 |
|
etransclem5 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑧 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑧 ) ↑ if ( 𝑧 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
20 |
4 19
|
eqtri |
⊢ 𝐻 = ( 𝑧 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑧 ) ↑ if ( 𝑧 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
22 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) → ( 𝐶 ‘ 𝑙 ) ∈ ( ℕ0 ↑m ( 0 ... 𝑀 ) ) ) |
23 |
|
elmapi |
⊢ ( ( 𝐶 ‘ 𝑙 ) ∈ ( ℕ0 ↑m ( 0 ... 𝑀 ) ) → ( 𝐶 ‘ 𝑙 ) : ( 0 ... 𝑀 ) ⟶ ℕ0 ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) → ( 𝐶 ‘ 𝑙 ) : ( 0 ... 𝑀 ) ⟶ ℕ0 ) |
25 |
24
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ∈ ℕ0 ) |
26 |
16 17 18 20 21 25
|
etransclem20 |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) : 𝑋 ⟶ ℂ ) |
27 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝐽 ∈ 𝑋 ) |
28 |
26 27
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ∈ ℂ ) |
29 |
15 28
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ∈ ℂ ) |
30 |
14 29
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑙 ∈ dom 𝐶 ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ∈ ℂ ) |
31 |
7 12 8 30
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐽 ) = Σ 𝑙 ∈ dom 𝐶 ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ) |
32 |
16 17 18 20 21 25 27
|
etransclem21 |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) = if ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) , 0 , ( ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ) ) |
33 |
|
iftrue |
⊢ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) → if ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) , 0 , ( ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ) = 0 ) |
34 |
|
0zd |
⊢ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) → 0 ∈ ℤ ) |
35 |
33 34
|
eqeltrd |
⊢ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) → if ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) , 0 , ( ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
36 |
35
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → if ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) , 0 , ( ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
37 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → 0 ∈ ℤ ) |
38 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
39 |
3 38
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
40 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
41 |
39 40
|
ifcld |
⊢ ( 𝜑 → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
42 |
41
|
nn0zd |
⊢ ( 𝜑 → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℤ ) |
43 |
42
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℤ ) |
44 |
25
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ∈ ℤ ) |
45 |
44
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ∈ ℤ ) |
46 |
43 45
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ∈ ℤ ) |
47 |
45
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ∈ ℝ ) |
48 |
43
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
49 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) |
50 |
47 48 49
|
nltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ≤ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
51 |
48 47
|
subge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( 0 ≤ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ↔ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ≤ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
52 |
50 51
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → 0 ≤ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) |
53 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ∈ ℝ ) |
54 |
25
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ∈ ℝ ) |
55 |
41
|
nn0red |
⊢ ( 𝜑 → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
57 |
25
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ≤ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) |
58 |
53 54 56 57
|
lesub2dd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ≤ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 0 ) ) |
59 |
56
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℂ ) |
60 |
59
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 0 ) = if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
61 |
58 60
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ≤ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
62 |
61
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ≤ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
63 |
37 43 46 52 62
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ∈ ( 0 ... if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
64 |
|
permnn |
⊢ ( ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ∈ ( 0 ... if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ∈ ℕ ) |
65 |
63 64
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ∈ ℕ ) |
66 |
65
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ∈ ℤ ) |
67 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → 𝐽 ∈ ℤ ) |
68 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
69 |
68
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → 𝑗 ∈ ℤ ) |
70 |
67 69
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( 𝐽 − 𝑗 ) ∈ ℤ ) |
71 |
|
elnn0z |
⊢ ( ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ∈ ℕ0 ↔ ( ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ∈ ℤ ∧ 0 ≤ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) |
72 |
46 52 71
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ∈ ℕ0 ) |
73 |
|
zexpcl |
⊢ ( ( ( 𝐽 − 𝑗 ) ∈ ℤ ∧ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ∈ ℕ0 ) → ( ( 𝐽 − 𝑗 ) ↑ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ∈ ℤ ) |
74 |
70 72 73
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( ( 𝐽 − 𝑗 ) ↑ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ∈ ℤ ) |
75 |
66 74
|
zmulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → ( ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ∈ ℤ ) |
76 |
37 75
|
ifcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) → if ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) , 0 , ( ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
77 |
36 76
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → if ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) , 0 , ( ( ( ! ‘ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
78 |
32 77
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ∈ ℤ ) |
79 |
15 78
|
fprodzcl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ dom 𝐶 ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ∈ ℤ ) |
80 |
14 79
|
fsumzcl |
⊢ ( 𝜑 → Σ 𝑙 ∈ dom 𝐶 ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ∈ ℤ ) |
81 |
31 80
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐽 ) ∈ ℤ ) |