| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem30.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
etransclem30.a |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 3 |
|
etransclem30.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 4 |
|
etransclem30.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 5 |
|
etransclem30.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
| 6 |
|
etransclem30.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 7 |
|
etransclem30.h |
⊢ 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 8 |
|
etransclem30.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
etransclem29 |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) ) |