Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem32.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
etransclem32.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
3 |
|
etransclem32.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
4 |
|
etransclem32.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
5 |
|
etransclem32.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
6 |
|
etransclem32.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
etransclem32.ngt |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) < 𝑁 ) |
8 |
|
etransclem32.h |
⊢ 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
9 |
|
etransclem11 |
⊢ ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
10 |
1 2 3 4 5 6 8 9
|
etransclem30 |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) |
12 |
9 6
|
etransclem12 |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
14 |
11 13
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
15 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
16 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
17 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) |
18 |
17
|
nfn |
⊢ Ⅎ 𝑘 ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) |
19 |
16 18
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
20 |
|
fzssre |
⊢ ( 0 ... 𝑁 ) ⊆ ℝ |
21 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ↔ ( 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∧ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 ) ) |
22 |
21
|
simplbi |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } → 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ) |
23 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
26 |
25
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ( 0 ... 𝑁 ) ) |
27 |
20 26
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
28 |
27
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
29 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
30 |
3 29
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
31 |
30
|
nn0red |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℝ ) |
32 |
3
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
33 |
31 32
|
ifcld |
⊢ ( 𝜑 → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
34 |
33
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
35 |
|
ralnex |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ¬ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ↔ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
36 |
35
|
biimpri |
⊢ ( ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) → ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ¬ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
37 |
36
|
r19.21bi |
⊢ ( ( ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ¬ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
38 |
37
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ¬ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
39 |
28 34 38
|
nltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
40 |
39
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( 𝑘 ∈ ( 0 ... 𝑀 ) → ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
41 |
19 40
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
42 |
21
|
simprbi |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 ) |
43 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 𝑘 ) ) |
44 |
43
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) |
45 |
42 44
|
eqtr3di |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } → 𝑁 = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) |
46 |
45
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → 𝑁 = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) |
47 |
|
fveq2 |
⊢ ( 𝑘 = ℎ → ( 𝑐 ‘ 𝑘 ) = ( 𝑐 ‘ ℎ ) ) |
48 |
47
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = Σ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ ℎ ) |
49 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
50 |
25
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ∈ ( 0 ... 𝑁 ) ) |
51 |
20 50
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ∈ ℝ ) |
52 |
51
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ∈ ℝ ) |
53 |
31 32
|
ifcld |
⊢ ( 𝜑 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
54 |
53
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
55 |
|
eqeq1 |
⊢ ( 𝑘 = ℎ → ( 𝑘 = 0 ↔ ℎ = 0 ) ) |
56 |
55
|
ifbid |
⊢ ( 𝑘 = ℎ → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) = if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
57 |
47 56
|
breq12d |
⊢ ( 𝑘 = ℎ → ( ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ↔ ( 𝑐 ‘ ℎ ) ≤ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
58 |
57
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ≤ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
59 |
58
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ ℎ ) ≤ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
60 |
49 52 54 59
|
fsumle |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → Σ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ ℎ ) ≤ Σ ℎ ∈ ( 0 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
61 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
62 |
4 61
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
63 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
64 |
30 63
|
ifcld |
⊢ ( 𝜑 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
66 |
65
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℂ ) |
67 |
|
iftrue |
⊢ ( ℎ = 0 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( 𝑃 − 1 ) ) |
68 |
62 66 67
|
fsum1p |
⊢ ( 𝜑 → Σ ℎ ∈ ( 0 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( ( 𝑃 − 1 ) + Σ ℎ ∈ ( ( 0 + 1 ) ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
69 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
70 |
69
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) |
71 |
70
|
a1i |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) ) |
72 |
71
|
sumeq1d |
⊢ ( 𝜑 → Σ ℎ ∈ ( ( 0 + 1 ) ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = Σ ℎ ∈ ( 1 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
73 |
|
0red |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 0 ∈ ℝ ) |
74 |
|
1red |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 1 ∈ ℝ ) |
75 |
|
elfzelz |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → ℎ ∈ ℤ ) |
76 |
75
|
zred |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → ℎ ∈ ℝ ) |
77 |
|
0lt1 |
⊢ 0 < 1 |
78 |
77
|
a1i |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 0 < 1 ) |
79 |
|
elfzle1 |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 1 ≤ ℎ ) |
80 |
73 74 76 78 79
|
ltletrd |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → 0 < ℎ ) |
81 |
80
|
gt0ne0d |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → ℎ ≠ 0 ) |
82 |
81
|
neneqd |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → ¬ ℎ = 0 ) |
83 |
82
|
iffalsed |
⊢ ( ℎ ∈ ( 1 ... 𝑀 ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = 𝑃 ) |
84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 1 ... 𝑀 ) ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = 𝑃 ) |
85 |
84
|
sumeq2dv |
⊢ ( 𝜑 → Σ ℎ ∈ ( 1 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = Σ ℎ ∈ ( 1 ... 𝑀 ) 𝑃 ) |
86 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
87 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
88 |
|
fsumconst |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝑃 ∈ ℂ ) → Σ ℎ ∈ ( 1 ... 𝑀 ) 𝑃 = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · 𝑃 ) ) |
89 |
86 87 88
|
syl2anc |
⊢ ( 𝜑 → Σ ℎ ∈ ( 1 ... 𝑀 ) 𝑃 = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · 𝑃 ) ) |
90 |
|
hashfz1 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
91 |
4 90
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
92 |
91
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · 𝑃 ) = ( 𝑀 · 𝑃 ) ) |
93 |
89 92
|
eqtrd |
⊢ ( 𝜑 → Σ ℎ ∈ ( 1 ... 𝑀 ) 𝑃 = ( 𝑀 · 𝑃 ) ) |
94 |
72 85 93
|
3eqtrd |
⊢ ( 𝜑 → Σ ℎ ∈ ( ( 0 + 1 ) ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( 𝑀 · 𝑃 ) ) |
95 |
94
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) + Σ ℎ ∈ ( ( 0 + 1 ) ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑃 − 1 ) + ( 𝑀 · 𝑃 ) ) ) |
96 |
30
|
nn0cnd |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℂ ) |
97 |
4 63
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℕ0 ) |
98 |
97
|
nn0cnd |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℂ ) |
99 |
96 98
|
addcomd |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) + ( 𝑀 · 𝑃 ) ) = ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
100 |
68 95 99
|
3eqtrd |
⊢ ( 𝜑 → Σ ℎ ∈ ( 0 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
101 |
100
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → Σ ℎ ∈ ( 0 ... 𝑀 ) if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
102 |
60 101
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → Σ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ ℎ ) ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
103 |
48 102
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
104 |
46 103
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ≤ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) → 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
105 |
41 104
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
106 |
97 30
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ∈ ℕ0 ) |
107 |
106
|
nn0red |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ∈ ℝ ) |
108 |
6
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
109 |
107 108
|
ltnled |
⊢ ( 𝜑 → ( ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) < 𝑁 ↔ ¬ 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) |
110 |
7 109
|
mpbid |
⊢ ( 𝜑 → ¬ 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
111 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ ¬ ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ¬ 𝑁 ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
112 |
105 111
|
condan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
113 |
112
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
114 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
115 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 0 ... 𝑀 ) |
116 |
115
|
nfsum1 |
⊢ Ⅎ 𝑗 Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) |
117 |
116
|
nfeq1 |
⊢ Ⅎ 𝑗 Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 |
118 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) |
119 |
117 118
|
nfrabw |
⊢ Ⅎ 𝑗 { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } |
120 |
119
|
nfcri |
⊢ Ⅎ 𝑗 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } |
121 |
114 120
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
122 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ∈ ( 0 ... 𝑀 ) |
123 |
|
nfv |
⊢ Ⅎ 𝑗 if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) |
124 |
121 122 123
|
nf3an |
⊢ Ⅎ 𝑗 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
125 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) |
126 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
127 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
128 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
129 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
130 |
|
etransclem5 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
131 |
8 130
|
eqtri |
⊢ 𝐻 = ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
132 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
133 |
24
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
134 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
135 |
133 134
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) ) |
136 |
135
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) ) |
137 |
|
elfznn0 |
⊢ ( ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) → ( 𝑐 ‘ 𝑗 ) ∈ ℕ0 ) |
138 |
136 137
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ℕ0 ) |
139 |
127 128 129 131 132 138
|
etransclem20 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) : 𝑋 ⟶ ℂ ) |
140 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ 𝑋 ) |
141 |
139 140
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ∈ ℂ ) |
142 |
141
|
3ad2antl1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ∈ ℂ ) |
143 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 𝑘 ) ) |
144 |
143
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) = ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ) |
145 |
144 43
|
fveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ) |
146 |
145
|
fveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) |
147 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
148 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → 𝑆 ∈ { ℝ , ℂ } ) |
149 |
148
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
150 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
151 |
150
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
152 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → 𝑃 ∈ ℕ ) |
153 |
152
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑃 ∈ ℕ ) |
154 |
|
etransclem5 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( ℎ ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
155 |
8 154
|
eqtri |
⊢ 𝐻 = ( ℎ ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
156 |
26
|
elfzelzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℤ ) |
157 |
156
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℤ ) |
158 |
157
|
3adant3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℤ ) |
159 |
|
simp3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) |
160 |
149 151 153 155 147 158 159
|
etransclem19 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) = ( 𝑦 ∈ 𝑋 ↦ 0 ) ) |
161 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) ∧ 𝑦 = 𝑥 ) → 0 = 0 ) |
162 |
|
simp1lr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 𝑥 ∈ 𝑋 ) |
163 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → 0 ∈ ℝ ) |
164 |
160 161 162 163
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) = 0 ) |
165 |
124 125 126 142 146 147 164
|
fprod0 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = 0 ) |
166 |
165
|
rexlimdv3a |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → ( ∃ 𝑘 ∈ ( 0 ... 𝑀 ) if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < ( 𝑐 ‘ 𝑘 ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) |
167 |
113 166
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = 0 ) |
168 |
15 167
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) = 0 ) |
169 |
168
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · 0 ) ) |
170 |
6
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
171 |
170
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ! ‘ 𝑁 ) ∈ ℂ ) |
173 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
174 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝜑 ) |
175 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑁 } ) |
176 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
177 |
174 175 176 135
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) ) |
178 |
177 137
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ℕ0 ) |
179 |
178
|
faccld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ∈ ℕ ) |
180 |
179
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ∈ ℂ ) |
181 |
173 180
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ∈ ℂ ) |
182 |
179
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ≠ 0 ) |
183 |
173 180 182
|
fprodn0 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ≠ 0 ) |
184 |
172 181 183
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) ∈ ℂ ) |
185 |
184
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · 0 ) = 0 ) |
186 |
185
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · 0 ) = 0 ) |
187 |
169 186
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) = 0 ) |
188 |
187
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) 0 ) |
189 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) = ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) |
190 |
189 6
|
etransclem16 |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ∈ Fin ) |
191 |
190
|
olcd |
⊢ ( 𝜑 → ( ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ∨ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ∈ Fin ) ) |
192 |
191
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ∨ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ∈ Fin ) ) |
193 |
|
sumz |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ∨ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ∈ Fin ) → Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) 0 = 0 ) |
194 |
192 193
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) 0 = 0 ) |
195 |
188 194
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) = 0 ) |
196 |
195
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
197 |
10 196
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |