Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem34.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
etransclem34.a |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
3 |
|
etransclem34.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
4 |
|
etransclem34.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
5 |
|
etransclem34.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) ) ) |
6 |
|
etransclem34.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
etransclem34.h |
⊢ 𝐻 = ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
8 |
|
etransclem34.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = 𝑛 } ) |
9 |
1 2 3 4 5 6 7 8
|
etransclem30 |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ) · ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) ) ) |
10 |
1 2
|
dvdmsscn |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
11 |
8 6
|
etransclem16 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) ∈ Fin ) |
12 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → 𝑋 ⊆ ℂ ) |
13 |
6
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
14 |
13
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ( ! ‘ 𝑁 ) ∈ ℂ ) |
16 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
17 |
|
fzssnn0 |
⊢ ( 0 ... 𝑁 ) ⊆ ℕ0 |
18 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = 𝑁 } ⊆ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) |
20 |
8 6
|
etransclem12 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = 𝑁 } ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ( 𝐶 ‘ 𝑁 ) = { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = 𝑁 } ) |
22 |
19 21
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = 𝑁 } ) |
23 |
18 22
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) ) |
24 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 ... 𝑁 ) ↑m ( 0 ... 𝑀 ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
26 |
25
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ( 0 ... 𝑁 ) ) |
27 |
17 26
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℕ0 ) |
28 |
27
|
faccld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ∈ ℕ ) |
29 |
28
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ∈ ℂ ) |
30 |
16 29
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ∈ ℂ ) |
31 |
28
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ≠ 0 ) |
32 |
16 29 31
|
fprodn0 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ≠ 0 ) |
33 |
15 30 32
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ( ( ! ‘ 𝑁 ) / ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ) ∈ ℂ ) |
34 |
|
ssid |
⊢ ℂ ⊆ ℂ |
35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ℂ ⊆ ℂ ) |
36 |
12 33 35
|
constcncfg |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( ! ‘ 𝑁 ) / ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
37 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
38 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
39 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
40 |
|
etransclem5 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
41 |
7 40
|
eqtri |
⊢ 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
43 |
37 38 39 41 42 27
|
etransclem20 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) : 𝑋 ⟶ ℂ ) |
44 |
43
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) : 𝑋 ⟶ ℂ ) |
45 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ 𝑋 ) |
46 |
44 45
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ∈ ℂ ) |
47 |
43
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) ) |
48 |
37 38 39 41 42 27
|
etransclem22 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
49 |
47 48
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
50 |
12 16 46 49
|
fprodcncf |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
51 |
36 50
|
mulcncf |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( ( ! ‘ 𝑁 ) / ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ) · ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
52 |
10 11 51
|
fsumcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ) · ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑘 ) ) ‘ ( 𝑐 ‘ 𝑘 ) ) ‘ 𝑥 ) ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
53 |
9 52
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( 𝑋 –cn→ ℂ ) ) |