Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem35.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
2 |
|
etransclem35.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
3 |
|
etransclem35.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
4 |
|
etransclem35.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
5 |
|
etransclem35.d |
⊢ 𝐷 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ) |
6 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
7 |
6
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
8 |
|
reopn |
⊢ ℝ ∈ ( topGen ‘ ran (,) ) |
9 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
10 |
9
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
11 |
8 10
|
eleqtri |
⊢ ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
13 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
15 |
|
etransclem5 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
16 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
17 |
7 12 1 2 3 14 15 4 16
|
etransclem31 |
⊢ ( 𝜑 → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) = Σ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) |
18 |
|
nfv |
⊢ Ⅎ 𝑐 𝜑 |
19 |
|
nfcv |
⊢ Ⅎ 𝑐 ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
20 |
4 14
|
etransclem16 |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∈ Fin ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) |
22 |
4 14
|
etransclem12 |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 − 1 ) ) = { 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) } ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( 𝐶 ‘ ( 𝑃 − 1 ) ) = { 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) } ) |
24 |
21 23
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) } ) |
25 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) } ↔ ( 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ∧ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) ) ) |
26 |
24 25
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ∧ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) ) ) |
27 |
26
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( 𝑃 − 1 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) |
29 |
28
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( ! ‘ ( 𝑃 − 1 ) ) = ( ! ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) = ( ( ! ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑐 |
32 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
33 |
|
nn0ex |
⊢ ℕ0 ∈ V |
34 |
|
fzssnn0 |
⊢ ( 0 ... ( 𝑃 − 1 ) ) ⊆ ℕ0 |
35 |
|
mapss |
⊢ ( ( ℕ0 ∈ V ∧ ( 0 ... ( 𝑃 − 1 ) ) ⊆ ℕ0 ) → ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ⊆ ( ℕ0 ↑m ( 0 ... 𝑀 ) ) ) |
36 |
33 34 35
|
mp2an |
⊢ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ⊆ ( ℕ0 ↑m ( 0 ... 𝑀 ) ) |
37 |
26
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ) |
38 |
36 37
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 𝑐 ∈ ( ℕ0 ↑m ( 0 ... 𝑀 ) ) ) |
39 |
31 32 38
|
mccl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( ( ! ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) ∈ ℕ ) |
40 |
30 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) ∈ ℕ ) |
41 |
40
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) ∈ ℤ ) |
42 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 𝑃 ∈ ℕ ) |
43 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 𝑀 ∈ ℕ0 ) |
44 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃 − 1 ) ) ) |
45 |
37 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃 − 1 ) ) ) |
46 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 0 ∈ ℤ ) |
47 |
42 43 45 46
|
etransclem10 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) ∈ ℤ ) |
48 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( 1 ... 𝑀 ) ∈ Fin ) |
49 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
50 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃 − 1 ) ) ) |
51 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
52 |
51
|
sseli |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
54 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 0 ∈ ℤ ) |
55 |
49 50 53 54
|
etransclem3 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
56 |
48 55
|
fprodzcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
57 |
47 56
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ∈ ℤ ) |
58 |
41 57
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ∈ ℤ ) |
59 |
58
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ∈ ℂ ) |
60 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
61 |
14 60
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
62 |
|
eluzfz2 |
⊢ ( ( 𝑃 − 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( 𝑃 − 1 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
63 |
61 62
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
64 |
|
eluzfz1 |
⊢ ( ( 𝑃 − 1 ) ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
65 |
61 64
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
66 |
63 65
|
ifcld |
⊢ ( 𝜑 → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
68 |
67 5
|
fmptd |
⊢ ( 𝜑 → 𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃 − 1 ) ) ) |
69 |
|
ovex |
⊢ ( 0 ... ( 𝑃 − 1 ) ) ∈ V |
70 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
71 |
69 70
|
elmap |
⊢ ( 𝐷 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ↔ 𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃 − 1 ) ) ) |
72 |
68 71
|
sylibr |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ) |
73 |
2 60
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
74 |
|
fzsscn |
⊢ ( 0 ... ( 𝑃 − 1 ) ) ⊆ ℂ |
75 |
68
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑗 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
76 |
74 75
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑗 ) ∈ ℂ ) |
77 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 0 ) ) |
78 |
73 76 77
|
fsum1p |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = ( ( 𝐷 ‘ 0 ) + Σ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) ) |
79 |
5
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ) ) |
80 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → 𝑗 = 0 ) |
81 |
80
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) = ( 𝑃 − 1 ) ) |
82 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
83 |
73 82
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
84 |
79 81 83 14
|
fvmptd |
⊢ ( 𝜑 → ( 𝐷 ‘ 0 ) = ( 𝑃 − 1 ) ) |
85 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
86 |
85
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) |
87 |
86
|
sumeq1i |
⊢ Σ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) |
88 |
87
|
a1i |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) |
89 |
5
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) → ( 𝐷 ‘ 𝑗 ) = if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ) |
90 |
52 66 89
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑗 ) = if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ) |
91 |
|
0red |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 0 ∈ ℝ ) |
92 |
|
1red |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 1 ∈ ℝ ) |
93 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
94 |
93
|
zred |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℝ ) |
95 |
|
0lt1 |
⊢ 0 < 1 |
96 |
95
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 0 < 1 ) |
97 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 1 ≤ 𝑗 ) |
98 |
91 92 94 96 97
|
ltletrd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 0 < 𝑗 ) |
99 |
91 98
|
gtned |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ≠ 0 ) |
100 |
99
|
neneqd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → ¬ 𝑗 = 0 ) |
101 |
100
|
iffalsed |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) = 0 ) |
102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) = 0 ) |
103 |
90 102
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑗 ) = 0 ) |
104 |
103
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... 𝑀 ) 0 ) |
105 |
|
fzfi |
⊢ ( 1 ... 𝑀 ) ∈ Fin |
106 |
105
|
olci |
⊢ ( ( 1 ... 𝑀 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ∨ ( 1 ... 𝑀 ) ∈ Fin ) |
107 |
|
sumz |
⊢ ( ( ( 1 ... 𝑀 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ∨ ( 1 ... 𝑀 ) ∈ Fin ) → Σ 𝑗 ∈ ( 1 ... 𝑀 ) 0 = 0 ) |
108 |
106 107
|
mp1i |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) 0 = 0 ) |
109 |
88 104 108
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = 0 ) |
110 |
84 109
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 0 ) + Σ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) = ( ( 𝑃 − 1 ) + 0 ) ) |
111 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
112 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
113 |
111 112
|
subcld |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℂ ) |
114 |
113
|
addid1d |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) + 0 ) = ( 𝑃 − 1 ) ) |
115 |
78 110 114
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = ( 𝑃 − 1 ) ) |
116 |
|
fveq1 |
⊢ ( 𝑐 = 𝐷 → ( 𝑐 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑗 ) ) |
117 |
116
|
sumeq2sdv |
⊢ ( 𝑐 = 𝐷 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) |
118 |
117
|
eqeq1d |
⊢ ( 𝑐 = 𝐷 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) ↔ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = ( 𝑃 − 1 ) ) ) |
119 |
118
|
elrab |
⊢ ( 𝐷 ∈ { 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) } ↔ ( 𝐷 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ∧ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) = ( 𝑃 − 1 ) ) ) |
120 |
72 115 119
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 ∈ { 𝑐 ∈ ( ( 0 ... ( 𝑃 − 1 ) ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) } ) |
121 |
120 22
|
eleqtrrd |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) |
122 |
116
|
fveq2d |
⊢ ( 𝑐 = 𝐷 → ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) = ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
123 |
122
|
prodeq2ad |
⊢ ( 𝑐 = 𝐷 → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) = ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
124 |
123
|
oveq2d |
⊢ ( 𝑐 = 𝐷 → ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
125 |
|
fveq1 |
⊢ ( 𝑐 = 𝐷 → ( 𝑐 ‘ 0 ) = ( 𝐷 ‘ 0 ) ) |
126 |
125
|
breq2d |
⊢ ( 𝑐 = 𝐷 → ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) ↔ ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) ) ) |
127 |
125
|
oveq2d |
⊢ ( 𝑐 = 𝐷 → ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) = ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) |
128 |
127
|
fveq2d |
⊢ ( 𝑐 = 𝐷 → ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) = ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) |
129 |
128
|
oveq2d |
⊢ ( 𝑐 = 𝐷 → ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) |
130 |
127
|
oveq2d |
⊢ ( 𝑐 = 𝐷 → ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) = ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) |
131 |
129 130
|
oveq12d |
⊢ ( 𝑐 = 𝐷 → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) = ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) |
132 |
126 131
|
ifbieq2d |
⊢ ( 𝑐 = 𝐷 → if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) = if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) ) |
133 |
116
|
breq2d |
⊢ ( 𝑐 = 𝐷 → ( 𝑃 < ( 𝑐 ‘ 𝑗 ) ↔ 𝑃 < ( 𝐷 ‘ 𝑗 ) ) ) |
134 |
116
|
oveq2d |
⊢ ( 𝑐 = 𝐷 → ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) = ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) |
135 |
134
|
fveq2d |
⊢ ( 𝑐 = 𝐷 → ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) = ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) |
136 |
135
|
oveq2d |
⊢ ( 𝑐 = 𝐷 → ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) = ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
137 |
134
|
oveq2d |
⊢ ( 𝑐 = 𝐷 → ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) = ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) |
138 |
136 137
|
oveq12d |
⊢ ( 𝑐 = 𝐷 → ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) = ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
139 |
133 138
|
ifbieq2d |
⊢ ( 𝑐 = 𝐷 → if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) = if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
140 |
139
|
prodeq2ad |
⊢ ( 𝑐 = 𝐷 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) = ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) |
141 |
132 140
|
oveq12d |
⊢ ( 𝑐 = 𝐷 → ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) = ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) |
142 |
124 141
|
oveq12d |
⊢ ( 𝑐 = 𝐷 → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) = ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) |
143 |
18 19 20 59 121 142
|
fsumsplit1 |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) = ( ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) + Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) ) |
144 |
34 75
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑗 ) ∈ ℕ0 ) |
145 |
144
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ∈ ℕ ) |
146 |
145
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ∈ ℂ ) |
147 |
77
|
fveq2d |
⊢ ( 𝑗 = 0 → ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ! ‘ ( 𝐷 ‘ 0 ) ) ) |
148 |
73 146 147
|
fprod1p |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ( ! ‘ ( 𝐷 ‘ 0 ) ) · ∏ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) |
149 |
84
|
fveq2d |
⊢ ( 𝜑 → ( ! ‘ ( 𝐷 ‘ 0 ) ) = ( ! ‘ ( 𝑃 − 1 ) ) ) |
150 |
86
|
prodeq1i |
⊢ ∏ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) = ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) |
151 |
150
|
a1i |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) = ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) |
152 |
103
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ! ‘ 0 ) ) |
153 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
154 |
152 153
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) = 1 ) |
155 |
154
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) = ∏ 𝑗 ∈ ( 1 ... 𝑀 ) 1 ) |
156 |
|
prod1 |
⊢ ( ( ( 1 ... 𝑀 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ∨ ( 1 ... 𝑀 ) ∈ Fin ) → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) 1 = 1 ) |
157 |
106 156
|
mp1i |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) 1 = 1 ) |
158 |
151 155 157
|
3eqtrd |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) = 1 ) |
159 |
149 158
|
oveq12d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝐷 ‘ 0 ) ) · ∏ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) · 1 ) ) |
160 |
14
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℕ ) |
161 |
160
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ ) |
162 |
161
|
mulid1d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) · 1 ) = ( ! ‘ ( 𝑃 − 1 ) ) ) |
163 |
148 159 162
|
3eqtrd |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) = ( ! ‘ ( 𝑃 − 1 ) ) ) |
164 |
163
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
165 |
160
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ) |
166 |
161 165
|
dividd |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = 1 ) |
167 |
164 166
|
eqtrd |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) = 1 ) |
168 |
14
|
nn0red |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℝ ) |
169 |
84 168
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 0 ) ∈ ℝ ) |
170 |
169 168
|
lttri3d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 0 ) = ( 𝑃 − 1 ) ↔ ( ¬ ( 𝐷 ‘ 0 ) < ( 𝑃 − 1 ) ∧ ¬ ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) ) ) ) |
171 |
84 170
|
mpbid |
⊢ ( 𝜑 → ( ¬ ( 𝐷 ‘ 0 ) < ( 𝑃 − 1 ) ∧ ¬ ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) ) ) |
172 |
171
|
simprd |
⊢ ( 𝜑 → ¬ ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) ) |
173 |
172
|
iffalsed |
⊢ ( 𝜑 → if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) = ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) |
174 |
84
|
eqcomd |
⊢ ( 𝜑 → ( 𝑃 − 1 ) = ( 𝐷 ‘ 0 ) ) |
175 |
113 174
|
subeq0bd |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) = 0 ) |
176 |
175
|
fveq2d |
⊢ ( 𝜑 → ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) = ( ! ‘ 0 ) ) |
177 |
176 153
|
eqtrdi |
⊢ ( 𝜑 → ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) = 1 ) |
178 |
177
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) / 1 ) ) |
179 |
161
|
div1d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) / 1 ) = ( ! ‘ ( 𝑃 − 1 ) ) ) |
180 |
178 179
|
eqtrd |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) = ( ! ‘ ( 𝑃 − 1 ) ) ) |
181 |
175
|
oveq2d |
⊢ ( 𝜑 → ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) = ( 0 ↑ 0 ) ) |
182 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
183 |
182
|
exp0d |
⊢ ( 𝜑 → ( 0 ↑ 0 ) = 1 ) |
184 |
181 183
|
eqtrd |
⊢ ( 𝜑 → ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) = 1 ) |
185 |
180 184
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) · 1 ) ) |
186 |
173 185 162
|
3eqtrd |
⊢ ( 𝜑 → if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) = ( ! ‘ ( 𝑃 − 1 ) ) ) |
187 |
|
fzssre |
⊢ ( 0 ... ( 𝑃 − 1 ) ) ⊆ ℝ |
188 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃 − 1 ) ) ) |
189 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
190 |
188 189
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑗 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
191 |
187 190
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
192 |
1
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
193 |
192
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑃 ∈ ℝ ) |
194 |
1
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑃 ) |
195 |
16 192 194
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝑃 ) |
196 |
195
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ 𝑃 ) |
197 |
103 196
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑗 ) ≤ 𝑃 ) |
198 |
191 193 197
|
lensymd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ¬ 𝑃 < ( 𝐷 ‘ 𝑗 ) ) |
199 |
198
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) |
200 |
103
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) = ( 𝑃 − 0 ) ) |
201 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑃 ∈ ℂ ) |
202 |
201
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 − 0 ) = 𝑃 ) |
203 |
200 202
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) = 𝑃 ) |
204 |
203
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) = ( ! ‘ 𝑃 ) ) |
205 |
204
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) = ( ( ! ‘ 𝑃 ) / ( ! ‘ 𝑃 ) ) ) |
206 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
207 |
206
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝑃 ) ∈ ℕ ) |
208 |
207
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ 𝑃 ) ∈ ℂ ) |
209 |
207
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ 𝑃 ) ≠ 0 ) |
210 |
208 209
|
dividd |
⊢ ( 𝜑 → ( ( ! ‘ 𝑃 ) / ( ! ‘ 𝑃 ) ) = 1 ) |
211 |
210
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ! ‘ 𝑃 ) / ( ! ‘ 𝑃 ) ) = 1 ) |
212 |
205 211
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) = 1 ) |
213 |
|
df-neg |
⊢ - 𝑗 = ( 0 − 𝑗 ) |
214 |
213
|
eqcomi |
⊢ ( 0 − 𝑗 ) = - 𝑗 |
215 |
214
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 0 − 𝑗 ) = - 𝑗 ) |
216 |
215 203
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) = ( - 𝑗 ↑ 𝑃 ) ) |
217 |
212 216
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) = ( 1 · ( - 𝑗 ↑ 𝑃 ) ) ) |
218 |
93
|
znegcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → - 𝑗 ∈ ℤ ) |
219 |
218
|
zcnd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → - 𝑗 ∈ ℂ ) |
220 |
219
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → - 𝑗 ∈ ℂ ) |
221 |
206
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑃 ∈ ℕ0 ) |
222 |
220 221
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( - 𝑗 ↑ 𝑃 ) ∈ ℂ ) |
223 |
222
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 1 · ( - 𝑗 ↑ 𝑃 ) ) = ( - 𝑗 ↑ 𝑃 ) ) |
224 |
199 217 223
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ( - 𝑗 ↑ 𝑃 ) ) |
225 |
224
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) = ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) |
226 |
186 225
|
oveq12d |
⊢ ( 𝜑 → ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) |
227 |
167 226
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) = ( 1 · ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) ) |
228 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
229 |
|
zexpcl |
⊢ ( ( - 𝑗 ∈ ℤ ∧ 𝑃 ∈ ℕ0 ) → ( - 𝑗 ↑ 𝑃 ) ∈ ℤ ) |
230 |
218 206 229
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( - 𝑗 ↑ 𝑃 ) ∈ ℤ ) |
231 |
228 230
|
fprodzcl |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ∈ ℤ ) |
232 |
231
|
zcnd |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ∈ ℂ ) |
233 |
161 232
|
mulcld |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ∈ ℂ ) |
234 |
233
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) |
235 |
227 234
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) |
236 |
|
eldifi |
⊢ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) → 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) |
237 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 0 ∈ ( 0 ... 𝑀 ) ) |
238 |
45 237
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( 𝑐 ‘ 0 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
239 |
236 238
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 𝑐 ‘ 0 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
240 |
187 239
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 𝑐 ‘ 0 ) ∈ ℝ ) |
241 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 𝑃 − 1 ) ∈ ℝ ) |
242 |
|
elfzle2 |
⊢ ( ( 𝑐 ‘ 0 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) → ( 𝑐 ‘ 0 ) ≤ ( 𝑃 − 1 ) ) |
243 |
239 242
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 𝑐 ‘ 0 ) ≤ ( 𝑃 − 1 ) ) |
244 |
240 241 243
|
lensymd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ¬ ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) ) |
245 |
244
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) = ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) |
246 |
14
|
nn0zd |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℤ ) |
247 |
246
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 𝑃 − 1 ) ∈ ℤ ) |
248 |
239
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 𝑐 ‘ 0 ) ∈ ℤ ) |
249 |
247 248
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ∈ ℤ ) |
250 |
45
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 𝑐 Fn ( 0 ... 𝑀 ) ) |
251 |
250
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) → 𝑐 Fn ( 0 ... 𝑀 ) ) |
252 |
68
|
ffnd |
⊢ ( 𝜑 → 𝐷 Fn ( 0 ... 𝑀 ) ) |
253 |
252
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) → 𝐷 Fn ( 0 ... 𝑀 ) ) |
254 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 0 ) ) |
255 |
254
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 = 0 ) → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 0 ) ) |
256 |
|
id |
⊢ ( ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) → ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) |
257 |
256
|
eqcomd |
⊢ ( ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) → ( 𝑐 ‘ 0 ) = ( 𝑃 − 1 ) ) |
258 |
257
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 = 0 ) → ( 𝑐 ‘ 0 ) = ( 𝑃 − 1 ) ) |
259 |
77
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → ( 𝐷 ‘ 𝑗 ) = ( 𝐷 ‘ 0 ) ) |
260 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → ( 𝐷 ‘ 0 ) = ( 𝑃 − 1 ) ) |
261 |
259 260
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → ( 𝑃 − 1 ) = ( 𝐷 ‘ 𝑗 ) ) |
262 |
261
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 = 0 ) → ( 𝑃 − 1 ) = ( 𝐷 ‘ 𝑗 ) ) |
263 |
255 258 262
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 = 0 ) → ( 𝑐 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑗 ) ) |
264 |
263
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 = 0 ) → ( 𝑐 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑗 ) ) |
265 |
264
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗 = 0 ) → ( 𝑐 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑗 ) ) |
266 |
27
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) ) |
267 |
168
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 𝑃 − 1 ) ∈ ℝ ) |
268 |
168
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 𝑃 − 1 ) ∈ ℝ ) |
269 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → 𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃 − 1 ) ) ) |
270 |
51
|
sseli |
⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
271 |
270
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
272 |
269 271
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
273 |
34 272
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℕ0 ) |
274 |
48 273
|
fsumnn0cl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ∈ ℕ0 ) |
275 |
274
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
276 |
275
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
277 |
|
0red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → 0 ∈ ℝ ) |
278 |
45
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
279 |
187 278
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ℝ ) |
280 |
279
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 𝑐 ‘ 𝑗 ) ∈ ℝ ) |
281 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) |
282 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑐 ‘ 𝑗 ) |
283 |
|
fzfid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 1 ... 𝑀 ) ∈ Fin ) |
284 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ) |
285 |
74 272
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
286 |
284 285
|
sylancom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
287 |
|
1zzd |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) → 1 ∈ ℤ ) |
288 |
|
elfzel2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
289 |
288
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) → 𝑀 ∈ ℤ ) |
290 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
291 |
290
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) → 𝑗 ∈ ℤ ) |
292 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 ) |
293 |
292
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) → 𝑗 ∈ ℕ0 ) |
294 |
|
neqne |
⊢ ( ¬ 𝑗 = 0 → 𝑗 ≠ 0 ) |
295 |
294
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) → 𝑗 ≠ 0 ) |
296 |
|
elnnne0 |
⊢ ( 𝑗 ∈ ℕ ↔ ( 𝑗 ∈ ℕ0 ∧ 𝑗 ≠ 0 ) ) |
297 |
293 295 296
|
sylanbrc |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) → 𝑗 ∈ ℕ ) |
298 |
297
|
nnge1d |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) → 1 ≤ 𝑗 ) |
299 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ≤ 𝑀 ) |
300 |
299
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) → 𝑗 ≤ 𝑀 ) |
301 |
287 289 291 298 300
|
elfzd |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
302 |
301
|
adantr |
⊢ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
303 |
302
|
adantlll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
304 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑐 ‘ 𝑘 ) = ( 𝑐 ‘ 𝑗 ) ) |
305 |
281 282 283 286 303 304
|
fsumsplit1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = ( ( 𝑐 ‘ 𝑗 ) + Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) |
306 |
305
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( ( 𝑐 ‘ 𝑗 ) + Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) |
307 |
306 276
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( ( 𝑐 ‘ 𝑗 ) + Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ∈ ℝ ) |
308 |
|
elfzle1 |
⊢ ( ( 𝑐 ‘ 𝑗 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) → 0 ≤ ( 𝑐 ‘ 𝑗 ) ) |
309 |
278 308
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ≤ ( 𝑐 ‘ 𝑗 ) ) |
310 |
309
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → 0 ≤ ( 𝑐 ‘ 𝑗 ) ) |
311 |
|
neqne |
⊢ ( ¬ ( 𝑐 ‘ 𝑗 ) = 0 → ( 𝑐 ‘ 𝑗 ) ≠ 0 ) |
312 |
311
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 𝑐 ‘ 𝑗 ) ≠ 0 ) |
313 |
277 280 310 312
|
leneltd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → 0 < ( 𝑐 ‘ 𝑗 ) ) |
314 |
|
diffi |
⊢ ( ( 1 ... 𝑀 ) ∈ Fin → ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∈ Fin ) |
315 |
105 314
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ∈ Fin ) |
316 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) → 𝑘 ∈ ( 1 ... 𝑀 ) ) |
317 |
316
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → 𝑘 ∈ ( 1 ... 𝑀 ) ) |
318 |
51 317
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
319 |
45
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) ) |
320 |
187 319
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
321 |
318 320
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
322 |
|
elfzle1 |
⊢ ( ( 𝑐 ‘ 𝑘 ) ∈ ( 0 ... ( 𝑃 − 1 ) ) → 0 ≤ ( 𝑐 ‘ 𝑘 ) ) |
323 |
319 322
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 0 ≤ ( 𝑐 ‘ 𝑘 ) ) |
324 |
318 323
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ) → 0 ≤ ( 𝑐 ‘ 𝑘 ) ) |
325 |
315 321 324
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → 0 ≤ Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) |
326 |
325
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ≤ Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) |
327 |
315 321
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) → Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
328 |
327
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ∈ ℝ ) |
329 |
279 328
|
addge01d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 0 ≤ Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ↔ ( 𝑐 ‘ 𝑗 ) ≤ ( ( 𝑐 ‘ 𝑗 ) + Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) ) |
330 |
326 329
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ≤ ( ( 𝑐 ‘ 𝑗 ) + Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) |
331 |
330
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 𝑐 ‘ 𝑗 ) ≤ ( ( 𝑐 ‘ 𝑗 ) + Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) |
332 |
277 280 307 313 331
|
ltletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → 0 < ( ( 𝑐 ‘ 𝑗 ) + Σ 𝑘 ∈ ( ( 1 ... 𝑀 ) ∖ { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) |
333 |
332 306
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → 0 < Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) |
334 |
276 333
|
elrpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ∈ ℝ+ ) |
335 |
268 334
|
ltaddrpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 𝑃 − 1 ) < ( ( 𝑃 − 1 ) + Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) ) |
336 |
335
|
adantl3r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 𝑃 − 1 ) < ( ( 𝑃 − 1 ) + Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) ) |
337 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑐 ‘ 𝑗 ) = ( 𝑐 ‘ 𝑘 ) ) |
338 |
337
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) |
339 |
338
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) |
340 |
73
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
341 |
|
simp-5l |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ) |
342 |
74 319
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
343 |
341 342
|
sylancom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℂ ) |
344 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑐 ‘ 𝑘 ) = ( 𝑐 ‘ 0 ) ) |
345 |
340 343 344
|
fsum1p |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = ( ( 𝑐 ‘ 0 ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) ) |
346 |
257
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 𝑐 ‘ 0 ) = ( 𝑃 − 1 ) ) |
347 |
86
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) |
348 |
347
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → Σ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) |
349 |
346 348
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( ( 𝑐 ‘ 0 ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) = ( ( 𝑃 − 1 ) + Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) ) |
350 |
339 345 349
|
3eqtrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( ( 𝑃 − 1 ) + Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) |
351 |
336 350
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ( 𝑃 − 1 ) < Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) |
352 |
267 351
|
gtned |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ≠ ( 𝑃 − 1 ) ) |
353 |
352
|
neneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) ∧ ¬ ( 𝑐 ‘ 𝑗 ) = 0 ) → ¬ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = ( 𝑃 − 1 ) ) |
354 |
266 353
|
condan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) → ( 𝑐 ‘ 𝑗 ) = 0 ) |
355 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
356 |
34 67
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ∈ ℕ0 ) |
357 |
5
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ∈ ℕ0 ) → ( 𝐷 ‘ 𝑗 ) = if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ) |
358 |
355 356 357
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑗 ) = if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ) |
359 |
358
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) → ( 𝐷 ‘ 𝑗 ) = if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) ) |
360 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) → ¬ 𝑗 = 0 ) |
361 |
360
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 0 ) = 0 ) |
362 |
359 361
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) → 0 = ( 𝐷 ‘ 𝑗 ) ) |
363 |
362
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) → 0 = ( 𝐷 ‘ 𝑗 ) ) |
364 |
363
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) → 0 = ( 𝐷 ‘ 𝑗 ) ) |
365 |
354 364
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑗 = 0 ) → ( 𝑐 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑗 ) ) |
366 |
265 365
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) = ( 𝐷 ‘ 𝑗 ) ) |
367 |
251 253 366
|
eqfnfvd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) → 𝑐 = 𝐷 ) |
368 |
236 367
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) → 𝑐 = 𝐷 ) |
369 |
|
eldifsni |
⊢ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) → 𝑐 ≠ 𝐷 ) |
370 |
369
|
neneqd |
⊢ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) → ¬ 𝑐 = 𝐷 ) |
371 |
370
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) ∧ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) → ¬ 𝑐 = 𝐷 ) |
372 |
368 371
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ¬ ( 𝑃 − 1 ) = ( 𝑐 ‘ 0 ) ) |
373 |
372
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 𝑃 − 1 ) ≠ ( 𝑐 ‘ 0 ) ) |
374 |
240 241 243 373
|
leneltd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 𝑐 ‘ 0 ) < ( 𝑃 − 1 ) ) |
375 |
240 241
|
posdifd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( 𝑐 ‘ 0 ) < ( 𝑃 − 1 ) ↔ 0 < ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) |
376 |
374 375
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → 0 < ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) |
377 |
|
elnnz |
⊢ ( ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ∈ ℕ ↔ ( ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ∈ ℤ ∧ 0 < ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) |
378 |
249 376 377
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ∈ ℕ ) |
379 |
378
|
0expd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) = 0 ) |
380 |
379
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) = ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · 0 ) ) |
381 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ ) |
382 |
378
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ∈ ℕ0 ) |
383 |
382
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ∈ ℕ ) |
384 |
383
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ∈ ℂ ) |
385 |
383
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ≠ 0 ) |
386 |
381 384 385
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ∈ ℂ ) |
387 |
386
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · 0 ) = 0 ) |
388 |
245 380 387
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) = 0 ) |
389 |
388
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) = ( 0 · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) |
390 |
236 56
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
391 |
390
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ∈ ℂ ) |
392 |
391
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 0 · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) = 0 ) |
393 |
389 392
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) = 0 ) |
394 |
393
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) = ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · 0 ) ) |
395 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
396 |
34 278
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐶 ‘ ( 𝑃 − 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ℕ0 ) |
397 |
236 396
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑐 ‘ 𝑗 ) ∈ ℕ0 ) |
398 |
397
|
faccld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ∈ ℕ ) |
399 |
395 398
|
fprodnncl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ∈ ℕ ) |
400 |
399
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ∈ ℂ ) |
401 |
399
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ≠ 0 ) |
402 |
381 400 401
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) ∈ ℂ ) |
403 |
402
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · 0 ) = 0 ) |
404 |
394 403
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ) → ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) = 0 ) |
405 |
404
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) = Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) 0 ) |
406 |
|
diffi |
⊢ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∈ Fin → ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ∈ Fin ) |
407 |
20 406
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ∈ Fin ) |
408 |
407
|
olcd |
⊢ ( 𝜑 → ( ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ∈ Fin ) ) |
409 |
|
sumz |
⊢ ( ( ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ∈ Fin ) → Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) 0 = 0 ) |
410 |
408 409
|
syl |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) 0 = 0 ) |
411 |
405 410
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) = 0 ) |
412 |
235 411
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) + Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) = ( ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) + 0 ) ) |
413 |
233
|
addid1d |
⊢ ( 𝜑 → ( ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) + 0 ) = ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) |
414 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
415 |
414 206 228 220
|
fprodexp |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) = ( ∏ 𝑗 ∈ ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) |
416 |
415
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) · ( ∏ 𝑗 ∈ ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) ) |
417 |
412 413 416
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝐷 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝐷 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐷 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) + Σ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑃 − 1 ) ) ∖ { 𝐷 } ) ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) · ( if ( ( 𝑃 − 1 ) < ( 𝑐 ‘ 0 ) , 0 , ( ( ( ! ‘ ( 𝑃 − 1 ) ) / ( ! ‘ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) · ( 0 ↑ ( ( 𝑃 − 1 ) − ( 𝑐 ‘ 0 ) ) ) ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝑐 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) · ( ( 0 − 𝑗 ) ↑ ( 𝑃 − ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) = ( ( ! ‘ ( 𝑃 − 1 ) ) · ( ∏ 𝑗 ∈ ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) ) |
418 |
17 143 417
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) = ( ( ! ‘ ( 𝑃 − 1 ) ) · ( ∏ 𝑗 ∈ ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) ) |