| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem35.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 2 |  | etransclem35.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 3 |  | etransclem35.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 4 |  | etransclem35.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 5 |  | etransclem35.d | ⊢ 𝐷  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 ) ) | 
						
							| 6 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 8 |  | reopn | ⊢ ℝ  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 9 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 10 | 8 9 | eleqtri | ⊢ ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 12 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 14 |  | etransclem5 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 15 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 16 | 7 11 1 2 3 13 14 4 15 | etransclem31 | ⊢ ( 𝜑  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  =  Σ 𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑐 𝜑 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑐 ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 19 | 4 13 | etransclem16 | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∈  Fin ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 21 | 4 13 | etransclem12 | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝑃  −  1 ) )  =  { 𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) } ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( 𝐶 ‘ ( 𝑃  −  1 ) )  =  { 𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) } ) | 
						
							| 23 | 20 22 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) } ) | 
						
							| 24 |  | rabid | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) }  ↔  ( 𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ∧  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) ) ) | 
						
							| 25 | 23 24 | sylib | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( 𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ∧  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) ) ) | 
						
							| 26 | 25 | simprd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( 𝑃  −  1 )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  =  ( ! ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  =  ( ( ! ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) ) | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑗 𝑐 | 
						
							| 31 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 32 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 33 |  | fzssnn0 | ⊢ ( 0 ... ( 𝑃  −  1 ) )  ⊆  ℕ0 | 
						
							| 34 |  | mapss | ⊢ ( ( ℕ0  ∈  V  ∧  ( 0 ... ( 𝑃  −  1 ) )  ⊆  ℕ0 )  →  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ⊆  ( ℕ0  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 35 | 32 33 34 | mp2an | ⊢ ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ⊆  ( ℕ0  ↑m  ( 0 ... 𝑀 ) ) | 
						
							| 36 | 25 | simpld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 37 | 35 36 | sselid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  𝑐  ∈  ( ℕ0  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 38 | 30 31 37 | mccl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( ( ! ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ∈  ℕ ) | 
						
							| 39 | 29 38 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ∈  ℕ ) | 
						
							| 40 | 39 | nnzd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ∈  ℤ ) | 
						
							| 41 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 42 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 43 |  | elmapi | ⊢ ( 𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 44 | 36 43 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 45 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  0  ∈  ℤ ) | 
						
							| 46 | 41 42 44 45 | etransclem10 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ∈  ℤ ) | 
						
							| 47 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 48 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 49 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 50 |  | fz1ssfz0 | ⊢ ( 1 ... 𝑀 )  ⊆  ( 0 ... 𝑀 ) | 
						
							| 51 | 50 | sseli | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 53 |  | 0zd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  0  ∈  ℤ ) | 
						
							| 54 | 48 49 52 53 | etransclem3 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 55 | 47 54 | fprodzcl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 56 | 46 55 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) )  ∈  ℤ ) | 
						
							| 57 | 40 56 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  ∈  ℤ ) | 
						
							| 58 | 57 | zcnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  ∈  ℂ ) | 
						
							| 59 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 60 | 13 59 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 61 |  | eluzfz2 | ⊢ ( ( 𝑃  −  1 )  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝑃  −  1 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 63 |  | eluzfz1 | ⊢ ( ( 𝑃  −  1 )  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 64 | 60 63 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 65 | 62 64 | ifcld | ⊢ ( 𝜑  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 67 | 66 5 | fmptd | ⊢ ( 𝜑  →  𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 68 |  | ovex | ⊢ ( 0 ... ( 𝑃  −  1 ) )  ∈  V | 
						
							| 69 |  | ovex | ⊢ ( 0 ... 𝑀 )  ∈  V | 
						
							| 70 | 68 69 | elmap | ⊢ ( 𝐷  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ↔  𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 71 | 67 70 | sylibr | ⊢ ( 𝜑  →  𝐷  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 72 | 2 59 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 73 |  | fzsscn | ⊢ ( 0 ... ( 𝑃  −  1 ) )  ⊆  ℂ | 
						
							| 74 | 67 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑗 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 75 | 73 74 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 76 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( 𝐷 ‘ 𝑗 )  =  ( 𝐷 ‘ 0 ) ) | 
						
							| 77 | 72 75 76 | fsum1p | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 )  =  ( ( 𝐷 ‘ 0 )  +  Σ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 78 | 5 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 ) ) ) | 
						
							| 79 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  =  0 )  →  𝑗  =  0 ) | 
						
							| 80 | 79 | iftrued | ⊢ ( ( 𝜑  ∧  𝑗  =  0 )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 )  =  ( 𝑃  −  1 ) ) | 
						
							| 81 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 82 | 72 81 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 83 | 78 80 82 13 | fvmptd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 0 )  =  ( 𝑃  −  1 ) ) | 
						
							| 84 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 85 | 84 | oveq1i | ⊢ ( ( 0  +  1 ) ... 𝑀 )  =  ( 1 ... 𝑀 ) | 
						
							| 86 | 85 | sumeq1i | ⊢ Σ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) | 
						
							| 87 | 86 | a1i | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 88 | 5 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) )  →  ( 𝐷 ‘ 𝑗 )  =  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 ) ) | 
						
							| 89 | 51 65 88 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑗 )  =  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 ) ) | 
						
							| 90 |  | 0red | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  ∈  ℝ ) | 
						
							| 91 |  | 1red | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  1  ∈  ℝ ) | 
						
							| 92 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 93 | 92 | zred | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 94 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 95 | 94 | a1i | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  <  1 ) | 
						
							| 96 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  1  ≤  𝑗 ) | 
						
							| 97 | 90 91 93 95 96 | ltletrd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  <  𝑗 ) | 
						
							| 98 | 90 97 | gtned | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ≠  0 ) | 
						
							| 99 | 98 | neneqd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ¬  𝑗  =  0 ) | 
						
							| 100 | 99 | iffalsed | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 )  =  0 ) | 
						
							| 101 | 100 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 )  =  0 ) | 
						
							| 102 | 89 101 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑗 )  =  0 ) | 
						
							| 103 | 102 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐷 ‘ 𝑗 )  =  Σ 𝑗  ∈  ( 1 ... 𝑀 ) 0 ) | 
						
							| 104 |  | fzfi | ⊢ ( 1 ... 𝑀 )  ∈  Fin | 
						
							| 105 | 104 | olci | ⊢ ( ( 1 ... 𝑀 )  ⊆  ( ℤ≥ ‘ 𝐴 )  ∨  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 106 |  | sumz | ⊢ ( ( ( 1 ... 𝑀 )  ⊆  ( ℤ≥ ‘ 𝐴 )  ∨  ( 1 ... 𝑀 )  ∈  Fin )  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) 0  =  0 ) | 
						
							| 107 | 105 106 | mp1i | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑀 ) 0  =  0 ) | 
						
							| 108 | 87 103 107 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 )  =  0 ) | 
						
							| 109 | 83 108 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 0 )  +  Σ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) )  =  ( ( 𝑃  −  1 )  +  0 ) ) | 
						
							| 110 | 1 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 111 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 112 | 110 111 | subcld | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 113 | 112 | addridd | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  +  0 )  =  ( 𝑃  −  1 ) ) | 
						
							| 114 | 77 109 113 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 )  =  ( 𝑃  −  1 ) ) | 
						
							| 115 |  | fveq1 | ⊢ ( 𝑐  =  𝐷  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 116 | 115 | sumeq2sdv | ⊢ ( 𝑐  =  𝐷  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 117 | 116 | eqeq1d | ⊢ ( 𝑐  =  𝐷  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 )  ↔  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 )  =  ( 𝑃  −  1 ) ) ) | 
						
							| 118 | 117 | elrab | ⊢ ( 𝐷  ∈  { 𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) }  ↔  ( 𝐷  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ∧  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝐷 ‘ 𝑗 )  =  ( 𝑃  −  1 ) ) ) | 
						
							| 119 | 71 114 118 | sylanbrc | ⊢ ( 𝜑  →  𝐷  ∈  { 𝑐  ∈  ( ( 0 ... ( 𝑃  −  1 ) )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) } ) | 
						
							| 120 | 119 21 | eleqtrrd | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 121 | 115 | fveq2d | ⊢ ( 𝑐  =  𝐷  →  ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  =  ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 122 | 121 | prodeq2ad | ⊢ ( 𝑐  =  𝐷  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  =  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 123 | 122 | oveq2d | ⊢ ( 𝑐  =  𝐷  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 124 |  | fveq1 | ⊢ ( 𝑐  =  𝐷  →  ( 𝑐 ‘ 0 )  =  ( 𝐷 ‘ 0 ) ) | 
						
							| 125 | 124 | breq2d | ⊢ ( 𝑐  =  𝐷  →  ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 )  ↔  ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ) ) | 
						
							| 126 | 124 | oveq2d | ⊢ ( 𝑐  =  𝐷  →  ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) )  =  ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) | 
						
							| 127 | 126 | fveq2d | ⊢ ( 𝑐  =  𝐷  →  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) )  =  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) | 
						
							| 128 | 127 | oveq2d | ⊢ ( 𝑐  =  𝐷  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) ) | 
						
							| 129 | 126 | oveq2d | ⊢ ( 𝑐  =  𝐷  →  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) )  =  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) | 
						
							| 130 | 128 129 | oveq12d | ⊢ ( 𝑐  =  𝐷  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  =  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) ) | 
						
							| 131 | 125 130 | ifbieq2d | ⊢ ( 𝑐  =  𝐷  →  if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  =  if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) ) ) | 
						
							| 132 | 115 | breq2d | ⊢ ( 𝑐  =  𝐷  →  ( 𝑃  <  ( 𝑐 ‘ 𝑗 )  ↔  𝑃  <  ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 133 | 115 | oveq2d | ⊢ ( 𝑐  =  𝐷  →  ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) )  =  ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 134 | 133 | fveq2d | ⊢ ( 𝑐  =  𝐷  →  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) )  =  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 135 | 134 | oveq2d | ⊢ ( 𝑐  =  𝐷  →  ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  =  ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 136 | 133 | oveq2d | ⊢ ( 𝑐  =  𝐷  →  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) )  =  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 137 | 135 136 | oveq12d | ⊢ ( 𝑐  =  𝐷  →  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  =  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 138 | 132 137 | ifbieq2d | ⊢ ( 𝑐  =  𝐷  →  if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  =  if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 139 | 138 | prodeq2ad | ⊢ ( 𝑐  =  𝐷  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 140 | 131 139 | oveq12d | ⊢ ( 𝑐  =  𝐷  →  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) )  =  ( if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 141 | 123 140 | oveq12d | ⊢ ( 𝑐  =  𝐷  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  =  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 142 | 17 18 19 58 120 141 | fsumsplit1 | ⊢ ( 𝜑  →  Σ 𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  =  ( ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) )  +  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) ) | 
						
							| 143 | 33 74 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 144 | 143 | faccld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  ∈  ℕ ) | 
						
							| 145 | 144 | nncnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 146 | 76 | fveq2d | ⊢ ( 𝑗  =  0  →  ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ! ‘ ( 𝐷 ‘ 0 ) ) ) | 
						
							| 147 | 72 145 146 | fprod1p | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ( ! ‘ ( 𝐷 ‘ 0 ) )  ·  ∏ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 148 | 83 | fveq2d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝐷 ‘ 0 ) )  =  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 149 | 85 | prodeq1i | ⊢ ∏ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 150 | 149 | a1i | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 151 | 102 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ! ‘ 0 ) ) | 
						
							| 152 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 153 | 151 152 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  =  1 ) | 
						
							| 154 | 153 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) 1 ) | 
						
							| 155 |  | prod1 | ⊢ ( ( ( 1 ... 𝑀 )  ⊆  ( ℤ≥ ‘ 𝐴 )  ∨  ( 1 ... 𝑀 )  ∈  Fin )  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) 1  =  1 ) | 
						
							| 156 | 105 155 | mp1i | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) 1  =  1 ) | 
						
							| 157 | 150 154 156 | 3eqtrd | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  =  1 ) | 
						
							| 158 | 148 157 | oveq12d | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝐷 ‘ 0 ) )  ·  ∏ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  1 ) ) | 
						
							| 159 | 13 | faccld | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ ) | 
						
							| 160 | 159 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 161 | 160 | mulridd | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  1 )  =  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 162 | 147 158 161 | 3eqtrd | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) )  =  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 163 | 162 | oveq2d | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 164 | 159 | nnne0d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0 ) | 
						
							| 165 | 160 164 | dividd | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  1 ) | 
						
							| 166 | 163 165 | eqtrd | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  =  1 ) | 
						
							| 167 | 13 | nn0red | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 168 | 83 167 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 0 )  ∈  ℝ ) | 
						
							| 169 | 168 167 | lttri3d | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 0 )  =  ( 𝑃  −  1 )  ↔  ( ¬  ( 𝐷 ‘ 0 )  <  ( 𝑃  −  1 )  ∧  ¬  ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ) ) ) | 
						
							| 170 | 83 169 | mpbid | ⊢ ( 𝜑  →  ( ¬  ( 𝐷 ‘ 0 )  <  ( 𝑃  −  1 )  ∧  ¬  ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ) ) | 
						
							| 171 | 170 | simprd | ⊢ ( 𝜑  →  ¬  ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ) | 
						
							| 172 | 171 | iffalsed | ⊢ ( 𝜑  →  if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  =  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) ) | 
						
							| 173 | 83 | eqcomd | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  =  ( 𝐷 ‘ 0 ) ) | 
						
							| 174 | 112 173 | subeq0bd | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) )  =  0 ) | 
						
							| 175 | 174 | fveq2d | ⊢ ( 𝜑  →  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) )  =  ( ! ‘ 0 ) ) | 
						
							| 176 | 175 152 | eqtrdi | ⊢ ( 𝜑  →  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) )  =  1 ) | 
						
							| 177 | 176 | oveq2d | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  /  1 ) ) | 
						
							| 178 | 160 | div1d | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  1 )  =  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 179 | 177 178 | eqtrd | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  =  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 180 | 174 | oveq2d | ⊢ ( 𝜑  →  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) )  =  ( 0 ↑ 0 ) ) | 
						
							| 181 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 182 | 181 | exp0d | ⊢ ( 𝜑  →  ( 0 ↑ 0 )  =  1 ) | 
						
							| 183 | 180 182 | eqtrd | ⊢ ( 𝜑  →  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) )  =  1 ) | 
						
							| 184 | 179 183 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  1 ) ) | 
						
							| 185 | 172 184 161 | 3eqtrd | ⊢ ( 𝜑  →  if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  =  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 186 |  | fzssre | ⊢ ( 0 ... ( 𝑃  −  1 ) )  ⊆  ℝ | 
						
							| 187 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝐷 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 188 | 51 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 189 | 187 188 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑗 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 190 | 186 189 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 191 | 1 | nnred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 192 | 191 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 193 | 1 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑃 ) | 
						
							| 194 | 15 191 193 | ltled | ⊢ ( 𝜑  →  0  ≤  𝑃 ) | 
						
							| 195 | 194 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  0  ≤  𝑃 ) | 
						
							| 196 | 102 195 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑗 )  ≤  𝑃 ) | 
						
							| 197 | 190 192 196 | lensymd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ¬  𝑃  <  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 198 | 197 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) | 
						
							| 199 | 102 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) )  =  ( 𝑃  −  0 ) ) | 
						
							| 200 | 110 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑃  ∈  ℂ ) | 
						
							| 201 | 200 | subid1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃  −  0 )  =  𝑃 ) | 
						
							| 202 | 199 201 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) )  =  𝑃 ) | 
						
							| 203 | 202 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) )  =  ( ! ‘ 𝑃 ) ) | 
						
							| 204 | 203 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( ( ! ‘ 𝑃 )  /  ( ! ‘ 𝑃 ) ) ) | 
						
							| 205 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 206 | 205 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 207 | 206 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 208 | 206 | nnne0d | ⊢ ( 𝜑  →  ( ! ‘ 𝑃 )  ≠  0 ) | 
						
							| 209 | 207 208 | dividd | ⊢ ( 𝜑  →  ( ( ! ‘ 𝑃 )  /  ( ! ‘ 𝑃 ) )  =  1 ) | 
						
							| 210 | 209 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ! ‘ 𝑃 )  /  ( ! ‘ 𝑃 ) )  =  1 ) | 
						
							| 211 | 204 210 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  =  1 ) | 
						
							| 212 |  | df-neg | ⊢ - 𝑗  =  ( 0  −  𝑗 ) | 
						
							| 213 | 212 | eqcomi | ⊢ ( 0  −  𝑗 )  =  - 𝑗 | 
						
							| 214 | 213 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 0  −  𝑗 )  =  - 𝑗 ) | 
						
							| 215 | 214 202 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) )  =  ( - 𝑗 ↑ 𝑃 ) ) | 
						
							| 216 | 211 215 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  =  ( 1  ·  ( - 𝑗 ↑ 𝑃 ) ) ) | 
						
							| 217 | 92 | znegcld | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  - 𝑗  ∈  ℤ ) | 
						
							| 218 | 217 | zcnd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  - 𝑗  ∈  ℂ ) | 
						
							| 219 | 218 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  - 𝑗  ∈  ℂ ) | 
						
							| 220 | 205 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑃  ∈  ℕ0 ) | 
						
							| 221 | 219 220 | expcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( - 𝑗 ↑ 𝑃 )  ∈  ℂ ) | 
						
							| 222 | 221 | mullidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 1  ·  ( - 𝑗 ↑ 𝑃 ) )  =  ( - 𝑗 ↑ 𝑃 ) ) | 
						
							| 223 | 198 216 222 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ( - 𝑗 ↑ 𝑃 ) ) | 
						
							| 224 | 223 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) | 
						
							| 225 | 185 224 | oveq12d | ⊢ ( 𝜑  →  ( if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) | 
						
							| 226 | 166 225 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) )  =  ( 1  ·  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) ) | 
						
							| 227 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 228 |  | zexpcl | ⊢ ( ( - 𝑗  ∈  ℤ  ∧  𝑃  ∈  ℕ0 )  →  ( - 𝑗 ↑ 𝑃 )  ∈  ℤ ) | 
						
							| 229 | 217 205 228 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( - 𝑗 ↑ 𝑃 )  ∈  ℤ ) | 
						
							| 230 | 227 229 | fprodzcl | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 )  ∈  ℤ ) | 
						
							| 231 | 230 | zcnd | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 )  ∈  ℂ ) | 
						
							| 232 | 160 231 | mulcld | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) )  ∈  ℂ ) | 
						
							| 233 | 232 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) | 
						
							| 234 | 226 233 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) | 
						
							| 235 |  | eldifi | ⊢ ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } )  →  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 236 | 82 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 237 | 44 236 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( 𝑐 ‘ 0 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 238 | 235 237 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 𝑐 ‘ 0 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 239 | 186 238 | sselid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 𝑐 ‘ 0 )  ∈  ℝ ) | 
						
							| 240 | 167 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 241 |  | elfzle2 | ⊢ ( ( 𝑐 ‘ 0 )  ∈  ( 0 ... ( 𝑃  −  1 ) )  →  ( 𝑐 ‘ 0 )  ≤  ( 𝑃  −  1 ) ) | 
						
							| 242 | 238 241 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 𝑐 ‘ 0 )  ≤  ( 𝑃  −  1 ) ) | 
						
							| 243 | 239 240 242 | lensymd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ¬  ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ) | 
						
							| 244 | 243 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  =  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) ) | 
						
							| 245 | 13 | nn0zd | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 246 | 245 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 247 | 238 | elfzelzd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 𝑐 ‘ 0 )  ∈  ℤ ) | 
						
							| 248 | 246 247 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) )  ∈  ℤ ) | 
						
							| 249 | 44 | ffnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  𝑐  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 250 | 249 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  →  𝑐  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 251 | 67 | ffnd | ⊢ ( 𝜑  →  𝐷  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 252 | 251 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  →  𝐷  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 253 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 0 ) ) | 
						
							| 254 | 253 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  =  0 )  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 0 ) ) | 
						
							| 255 |  | id | ⊢ ( ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 )  →  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) ) | 
						
							| 256 | 255 | eqcomd | ⊢ ( ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 )  →  ( 𝑐 ‘ 0 )  =  ( 𝑃  −  1 ) ) | 
						
							| 257 | 256 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  =  0 )  →  ( 𝑐 ‘ 0 )  =  ( 𝑃  −  1 ) ) | 
						
							| 258 | 76 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  =  0 )  →  ( 𝐷 ‘ 𝑗 )  =  ( 𝐷 ‘ 0 ) ) | 
						
							| 259 | 83 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  =  0 )  →  ( 𝐷 ‘ 0 )  =  ( 𝑃  −  1 ) ) | 
						
							| 260 | 258 259 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑗  =  0 )  →  ( 𝑃  −  1 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 261 | 260 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  =  0 )  →  ( 𝑃  −  1 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 262 | 254 257 261 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  =  0 )  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 263 | 262 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  =  0 )  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 264 | 263 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑗  =  0 )  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 265 | 26 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) ) | 
						
							| 266 | 167 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 267 | 167 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 268 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 269 | 50 | sseli | ⊢ ( 𝑘  ∈  ( 1 ... 𝑀 )  →  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 270 | 269 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 271 | 268 270 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 272 | 33 271 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 273 | 47 272 | fsumnn0cl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 274 | 273 | nn0red | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 275 | 274 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 276 |  | 0red | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  0  ∈  ℝ ) | 
						
							| 277 | 44 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 278 | 186 277 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 279 | 278 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 𝑐 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 280 |  | nfv | ⊢ Ⅎ 𝑘 ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 ) | 
						
							| 281 |  | nfcv | ⊢ Ⅎ 𝑘 ( 𝑐 ‘ 𝑗 ) | 
						
							| 282 |  | fzfid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 283 |  | simp-4l | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 284 | 73 271 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 285 | 283 284 | sylancom | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 286 |  | 1zzd | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  →  1  ∈  ℤ ) | 
						
							| 287 |  | elfzel2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 288 | 287 | adantr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  →  𝑀  ∈  ℤ ) | 
						
							| 289 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 290 | 289 | adantr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  →  𝑗  ∈  ℤ ) | 
						
							| 291 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 292 | 291 | adantr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 293 |  | neqne | ⊢ ( ¬  𝑗  =  0  →  𝑗  ≠  0 ) | 
						
							| 294 | 293 | adantl | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  →  𝑗  ≠  0 ) | 
						
							| 295 |  | elnnne0 | ⊢ ( 𝑗  ∈  ℕ  ↔  ( 𝑗  ∈  ℕ0  ∧  𝑗  ≠  0 ) ) | 
						
							| 296 | 292 294 295 | sylanbrc | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  →  𝑗  ∈  ℕ ) | 
						
							| 297 | 296 | nnge1d | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  →  1  ≤  𝑗 ) | 
						
							| 298 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ≤  𝑀 ) | 
						
							| 299 | 298 | adantr | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  →  𝑗  ≤  𝑀 ) | 
						
							| 300 | 286 288 290 297 299 | elfzd | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 301 | 300 | adantr | ⊢ ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 302 | 301 | adantlll | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 303 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑐 ‘ 𝑘 )  =  ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 304 | 280 281 282 285 302 303 | fsumsplit1 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  ( ( 𝑐 ‘ 𝑗 )  +  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 305 | 304 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( ( 𝑐 ‘ 𝑗 )  +  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 306 | 305 275 | eqeltrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( ( 𝑐 ‘ 𝑗 )  +  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 307 |  | elfzle1 | ⊢ ( ( 𝑐 ‘ 𝑗 )  ∈  ( 0 ... ( 𝑃  −  1 ) )  →  0  ≤  ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 308 | 277 307 | syl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 309 | 308 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  0  ≤  ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 310 |  | neqne | ⊢ ( ¬  ( 𝑐 ‘ 𝑗 )  =  0  →  ( 𝑐 ‘ 𝑗 )  ≠  0 ) | 
						
							| 311 | 310 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 𝑐 ‘ 𝑗 )  ≠  0 ) | 
						
							| 312 | 276 279 309 311 | leneltd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  0  <  ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 313 |  | diffi | ⊢ ( ( 1 ... 𝑀 )  ∈  Fin  →  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 314 | 104 313 | mp1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 315 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  →  𝑘  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 316 | 315 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  𝑘  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 317 | 50 316 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 318 | 44 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 319 | 186 318 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 320 | 317 319 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 321 |  | elfzle1 | ⊢ ( ( 𝑐 ‘ 𝑘 )  ∈  ( 0 ... ( 𝑃  −  1 ) )  →  0  ≤  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 322 | 318 321 | syl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 323 | 317 322 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  0  ≤  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 324 | 314 320 323 | fsumge0 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  0  ≤  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 325 | 324 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 326 | 314 320 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  →  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 327 | 326 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 328 | 278 327 | addge01d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 0  ≤  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 )  ↔  ( 𝑐 ‘ 𝑗 )  ≤  ( ( 𝑐 ‘ 𝑗 )  +  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) ) | 
						
							| 329 | 325 328 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ≤  ( ( 𝑐 ‘ 𝑗 )  +  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 330 | 329 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 𝑐 ‘ 𝑗 )  ≤  ( ( 𝑐 ‘ 𝑗 )  +  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 331 | 276 279 306 312 330 | ltletrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  0  <  ( ( 𝑐 ‘ 𝑗 )  +  Σ 𝑘  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 332 | 331 305 | breqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  0  <  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 333 | 275 332 | elrpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  ∈  ℝ+ ) | 
						
							| 334 | 267 333 | ltaddrpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 𝑃  −  1 )  <  ( ( 𝑃  −  1 )  +  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 335 | 334 | adantl3r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 𝑃  −  1 )  <  ( ( 𝑃  −  1 )  +  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 336 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 337 | 336 | cbvsumv | ⊢ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) | 
						
							| 338 | 337 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 339 | 72 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 340 |  | simp-5l | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 341 | 73 318 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 342 | 340 341 | sylancom | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 343 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑐 ‘ 𝑘 )  =  ( 𝑐 ‘ 0 ) ) | 
						
							| 344 | 339 342 343 | fsum1p | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  ( ( 𝑐 ‘ 0 )  +  Σ 𝑘  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 345 | 256 | ad4antlr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 𝑐 ‘ 0 )  =  ( 𝑃  −  1 ) ) | 
						
							| 346 | 85 | sumeq1i | ⊢ Σ 𝑘  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) | 
						
							| 347 | 346 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  Σ 𝑘  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 348 | 345 347 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( ( 𝑐 ‘ 0 )  +  Σ 𝑘  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) )  =  ( ( 𝑃  −  1 )  +  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 349 | 338 344 348 | 3eqtrrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( ( 𝑃  −  1 )  +  Σ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 350 | 335 349 | breqtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ( 𝑃  −  1 )  <  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 351 | 266 350 | gtned | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  ≠  ( 𝑃  −  1 ) ) | 
						
							| 352 | 351 | neneqd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  ∧  ¬  ( 𝑐 ‘ 𝑗 )  =  0 )  →  ¬  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  ( 𝑃  −  1 ) ) | 
						
							| 353 | 265 352 | condan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  →  ( 𝑐 ‘ 𝑗 )  =  0 ) | 
						
							| 354 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 355 | 33 66 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 356 | 5 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 )  ∈  ℕ0 )  →  ( 𝐷 ‘ 𝑗 )  =  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 ) ) | 
						
							| 357 | 354 355 356 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑗 )  =  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 ) ) | 
						
							| 358 | 357 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  →  ( 𝐷 ‘ 𝑗 )  =  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 ) ) | 
						
							| 359 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  →  ¬  𝑗  =  0 ) | 
						
							| 360 | 359 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  0 )  =  0 ) | 
						
							| 361 | 358 360 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  →  0  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 362 | 361 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  →  0  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 363 | 362 | adantllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  →  0  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 364 | 353 363 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  𝑗  =  0 )  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 365 | 264 364 | pm2.61dan | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 366 | 250 252 365 | eqfnfvd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  →  𝑐  =  𝐷 ) | 
						
							| 367 | 235 366 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  →  𝑐  =  𝐷 ) | 
						
							| 368 |  | eldifsni | ⊢ ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } )  →  𝑐  ≠  𝐷 ) | 
						
							| 369 | 368 | neneqd | ⊢ ( 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } )  →  ¬  𝑐  =  𝐷 ) | 
						
							| 370 | 369 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  ∧  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) )  →  ¬  𝑐  =  𝐷 ) | 
						
							| 371 | 367 370 | pm2.65da | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ¬  ( 𝑃  −  1 )  =  ( 𝑐 ‘ 0 ) ) | 
						
							| 372 | 371 | neqned | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 𝑃  −  1 )  ≠  ( 𝑐 ‘ 0 ) ) | 
						
							| 373 | 239 240 242 372 | leneltd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 𝑐 ‘ 0 )  <  ( 𝑃  −  1 ) ) | 
						
							| 374 | 239 240 | posdifd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( 𝑐 ‘ 0 )  <  ( 𝑃  −  1 )  ↔  0  <  ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) | 
						
							| 375 | 373 374 | mpbid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  0  <  ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) | 
						
							| 376 |  | elnnz | ⊢ ( ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) )  ∈  ℕ  ↔  ( ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) )  ∈  ℤ  ∧  0  <  ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) | 
						
							| 377 | 248 375 376 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) )  ∈  ℕ ) | 
						
							| 378 | 377 | 0expd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) )  =  0 ) | 
						
							| 379 | 378 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  =  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  0 ) ) | 
						
							| 380 | 160 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 381 | 377 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) )  ∈  ℕ0 ) | 
						
							| 382 | 381 | faccld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) )  ∈  ℕ ) | 
						
							| 383 | 382 | nncnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) )  ∈  ℂ ) | 
						
							| 384 | 382 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) )  ≠  0 ) | 
						
							| 385 | 380 383 384 | divcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ∈  ℂ ) | 
						
							| 386 | 385 | mul01d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  0 )  =  0 ) | 
						
							| 387 | 244 379 386 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  =  0 ) | 
						
							| 388 | 387 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) )  =  ( 0  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 389 | 235 55 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 390 | 389 | zcnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  ∈  ℂ ) | 
						
							| 391 | 390 | mul02d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 0  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) )  =  0 ) | 
						
							| 392 | 388 391 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) )  =  0 ) | 
						
							| 393 | 392 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  =  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  0 ) ) | 
						
							| 394 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 395 | 33 277 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ ( 𝑃  −  1 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 396 | 235 395 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑐 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 397 | 396 | faccld | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ∈  ℕ ) | 
						
							| 398 | 394 397 | fprodnncl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ∈  ℕ ) | 
						
							| 399 | 398 | nncnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 400 | 398 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  ≠  0 ) | 
						
							| 401 | 380 399 400 | divcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ∈  ℂ ) | 
						
							| 402 | 401 | mul01d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  0 )  =  0 ) | 
						
							| 403 | 393 402 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) )  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  =  0 ) | 
						
							| 404 | 403 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  =  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) 0 ) | 
						
							| 405 |  | diffi | ⊢ ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∈  Fin  →  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } )  ∈  Fin ) | 
						
							| 406 | 19 405 | syl | ⊢ ( 𝜑  →  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } )  ∈  Fin ) | 
						
							| 407 | 406 | olcd | ⊢ ( 𝜑  →  ( ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } )  ∈  Fin ) ) | 
						
							| 408 |  | sumz | ⊢ ( ( ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } )  ∈  Fin )  →  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) 0  =  0 ) | 
						
							| 409 | 407 408 | syl | ⊢ ( 𝜑  →  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) 0  =  0 ) | 
						
							| 410 | 404 409 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  =  0 ) | 
						
							| 411 | 234 410 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) )  +  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) )  =  ( ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) )  +  0 ) ) | 
						
							| 412 | 232 | addridd | ⊢ ( 𝜑  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) )  +  0 )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) ) ) | 
						
							| 413 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 414 | 413 205 227 219 | fprodexp | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 )  =  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) | 
						
							| 415 | 414 | oveq2d | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( - 𝑗 ↑ 𝑃 ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) ) | 
						
							| 416 | 411 412 415 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝐷 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝐷 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝐷 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐷 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐷 ‘ 𝑗 ) ) ) ) ) ) )  +  Σ 𝑐  ∈  ( ( 𝐶 ‘ ( 𝑃  −  1 ) )  ∖  { 𝐷 } ) ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 0 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 0  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) ) | 
						
							| 417 | 16 142 416 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  ·  ( ∏ 𝑗  ∈  ( 1 ... 𝑀 ) - 𝑗 ↑ 𝑃 ) ) ) |