| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem36.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem36.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem36.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem36.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem36.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem36.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | etransclem36.h | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 8 |  | etransclem36.jx | ⊢ ( 𝜑  →  𝐽  ∈  𝑋 ) | 
						
							| 9 |  | etransclem36.jz | ⊢ ( 𝜑  →  𝐽  ∈  ℤ ) | 
						
							| 10 |  | etransclem36.10 | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 11 | 1 2 3 4 5 6 7 10 8 | etransclem31 | ⊢ ( 𝜑  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ‘ 𝐽 )  =  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 12 | 10 6 | etransclem16 | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑁 )  ∈  Fin ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 15 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 16 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 17 |  | etransclem11 | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } )  =  ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) | 
						
							| 18 |  | etransclem11 | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑒 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 19 | 10 17 18 | 3eqtri | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑒 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ) | 
						
							| 21 | 13 14 15 16 19 20 | etransclem26 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  ∈  ℤ ) | 
						
							| 22 | 12 21 | fsumzcl | ⊢ ( 𝜑  →  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  ∈  ℤ ) | 
						
							| 23 | 11 22 | eqeltrd | ⊢ ( 𝜑  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ‘ 𝐽 )  ∈  ℤ ) |