Metamath Proof Explorer


Theorem etransclem39

Description: G is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem39.p ( 𝜑𝑃 ∈ ℕ )
etransclem39.m ( 𝜑𝑀 ∈ ℕ0 )
etransclem39.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥𝑗 ) ↑ 𝑃 ) ) )
etransclem39.g 𝐺 = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) )
Assertion etransclem39 ( 𝜑𝐺 : ℝ ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 etransclem39.p ( 𝜑𝑃 ∈ ℕ )
2 etransclem39.m ( 𝜑𝑀 ∈ ℕ0 )
3 etransclem39.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥𝑗 ) ↑ 𝑃 ) ) )
4 etransclem39.g 𝐺 = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) )
5 fzfid ( ( 𝜑𝑥 ∈ ℝ ) → ( 0 ... 𝑅 ) ∈ Fin )
6 reelprrecn ℝ ∈ { ℝ , ℂ }
7 6 a1i ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → ℝ ∈ { ℝ , ℂ } )
8 reopn ℝ ∈ ( topGen ‘ ran (,) )
9 tgioo4 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
10 8 9 eleqtri ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
11 10 a1i ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) )
12 1 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑃 ∈ ℕ )
13 2 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑀 ∈ ℕ0 )
14 elfznn0 ( 𝑖 ∈ ( 0 ... 𝑅 ) → 𝑖 ∈ ℕ0 )
15 14 adantl ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑖 ∈ ℕ0 )
16 7 11 12 13 3 15 etransclem33 ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ )
17 16 adantlr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ )
18 simplr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑥 ∈ ℝ )
19 17 18 ffvelcdmd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ )
20 5 19 fsumcl ( ( 𝜑𝑥 ∈ ℝ ) → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ )
21 20 4 fmptd ( 𝜑𝐺 : ℝ ⟶ ℂ )