Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem39.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
2 |
|
etransclem39.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
3 |
|
etransclem39.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
4 |
|
etransclem39.g |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
5 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 0 ... 𝑅 ) ∈ Fin ) |
6 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
7 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ℝ ∈ { ℝ , ℂ } ) |
8 |
|
reopn |
⊢ ℝ ∈ ( topGen ‘ ran (,) ) |
9 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
10 |
9
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
11 |
8 10
|
eleqtri |
⊢ ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑃 ∈ ℕ ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑀 ∈ ℕ0 ) |
15 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑅 ) → 𝑖 ∈ ℕ0 ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑖 ∈ ℕ0 ) |
17 |
7 12 13 14 3 16
|
etransclem33 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) |
19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑥 ∈ ℝ ) |
20 |
18 19
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ ) |
21 |
5 20
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ ) |
22 |
21 4
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℂ ) |