Metamath Proof Explorer


Theorem etransclem39

Description: G is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem39.p ( 𝜑𝑃 ∈ ℕ )
etransclem39.m ( 𝜑𝑀 ∈ ℕ0 )
etransclem39.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥𝑗 ) ↑ 𝑃 ) ) )
etransclem39.g 𝐺 = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) )
Assertion etransclem39 ( 𝜑𝐺 : ℝ ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 etransclem39.p ( 𝜑𝑃 ∈ ℕ )
2 etransclem39.m ( 𝜑𝑀 ∈ ℕ0 )
3 etransclem39.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥𝑗 ) ↑ 𝑃 ) ) )
4 etransclem39.g 𝐺 = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) )
5 fzfid ( ( 𝜑𝑥 ∈ ℝ ) → ( 0 ... 𝑅 ) ∈ Fin )
6 reelprrecn ℝ ∈ { ℝ , ℂ }
7 6 a1i ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → ℝ ∈ { ℝ , ℂ } )
8 reopn ℝ ∈ ( topGen ‘ ran (,) )
9 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
10 9 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
11 8 10 eleqtri ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
12 11 a1i ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) )
13 1 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑃 ∈ ℕ )
14 2 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑀 ∈ ℕ0 )
15 elfznn0 ( 𝑖 ∈ ( 0 ... 𝑅 ) → 𝑖 ∈ ℕ0 )
16 15 adantl ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑖 ∈ ℕ0 )
17 7 12 13 14 3 16 etransclem33 ( ( 𝜑𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ )
18 17 adantlr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ )
19 simplr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑥 ∈ ℝ )
20 18 19 ffvelrnd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ )
21 5 20 fsumcl ( ( 𝜑𝑥 ∈ ℝ ) → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ )
22 21 4 fmptd ( 𝜑𝐺 : ℝ ⟶ ℂ )