| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem39.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 2 |
|
etransclem39.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 3 |
|
etransclem39.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
| 4 |
|
etransclem39.g |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
| 5 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 0 ... 𝑅 ) ∈ Fin ) |
| 6 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 7 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 8 |
|
reopn |
⊢ ℝ ∈ ( topGen ‘ ran (,) ) |
| 9 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 10 |
8 9
|
eleqtri |
⊢ ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑃 ∈ ℕ ) |
| 13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑀 ∈ ℕ0 ) |
| 14 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑅 ) → 𝑖 ∈ ℕ0 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑖 ∈ ℕ0 ) |
| 16 |
7 11 12 13 3 15
|
etransclem33 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) |
| 17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑥 ∈ ℝ ) |
| 19 |
17 18
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ ) |
| 20 |
5 19
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ ) |
| 21 |
20 4
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℂ ) |